Existing computer vision and object detection methods strongly rely on neural networks and deep learning. This active research area is used for applications such as autonomous driving, aerial photography, protection, and monitoring. Futuristic object detection methods rely on rectangular, boundary boxes drawn over an object to accurately locate its location. The modern object recognition algorithms, however, are vulnerable to multiple factors, such as illumination, occlusion, viewing angle, or camera rotation as well as cost. Therefore, deep learning-based object recognition will significantly increase the recognition speed and compatible external interference. In this study, we use convolutional neural networks (CNN) to recognize items, the neural networks have the advantages of end-to-end, sparse relation, and sharing weights. This article aims to classify the name of the various object based on the position of an object's detected box. Instead, under different distances, we can get recognition results with different confidence. Through this study, we find that this model's accuracy through recognition is mainly influenced by the proportion of objects and the number of samples. When we have a small proportion of an object on camera, then we get higher recognition accuracy; if we have a much small number of samples, we can get greater accuracy in recognition. The epidemic has a great impact on the world economy where designing a cheaper object recognition system is the need of time.


翻译:现有的计算机视觉和物体探测方法非常依赖神经网络和深层学习。 这个活跃的研究领域用于自主驱动、航空摄影、保护和监测等应用。 未来物体探测方法依靠在物体上绘制的矩形边框来精确定位其位置。 然而,现代物体识别算法很容易受到多种因素的影响, 如照明、隔离、视觉、角度或相机旋转以及成本。 因此, 深层次的学习对象识别将大大提高识别速度和兼容的外部干扰。 在这个研究中, 我们使用神经神经网络(CNN)来识别物品, 神经网络具有端到端、 稀少的关系和共享重量的优势。 文章的目的是根据物体检测框的位置对各种物体的名称进行分类。 相反, 在不同的距离下, 我们可以以不同的信心获得识别结果。 通过这项研究, 我们发现这一模型的准确性将主要受到物体比例和样品数量的影响。 当我们在相机上有一个小比例的物体时, 神经网络具有端到端到端到端的优点, 那么神经网络就具有端到端到端、 稀少的关系和共享重量重量的优点。 文章的目的是根据物体的位置来进行更精确的识别。 如果我们在设计一个更精确的系统里, 我们就可以更精确地了解一个更精确地了解一个更精确的事物。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员