The 2D/1D multiscale finite element method (MSFEM) is an efficient way to simulate rotating machines in which each iron sheet is exposed to the same field. It allows the reduction of the three dimensional sheet to a two dimensional cross-section by resolving the dependence along the thickness of the sheet with a polynomial expansion. This work presents an equilibrated error estimator based on flux equilibration and the theorem of Prager and Synge for the T-formulation of the eddy current problem in a 2D/1D MSFEM setting. The estimator is shown to give both a good approximation of the total error and to allow for adaptive mesh refinement by correctly estimating the local error distribution.
翻译:2D/1D 多尺度有限元件法(MSFEM)是模拟旋转机器的有效方法,每个铁板都暴露在同一个字段中。它通过多面扩张解决厚厚层的依附性,可以将三维面板减为二维交叉区块。这项工作提供了一个基于通量平衡的平衡和对焦和同步的理论的均衡误差估计器,用于在 2D/1D MSFEM 设置中绘制热流当前问题的图式。估计器显示,它既能对总误差进行良好的近似,又能通过正确估计局部误差分布进行适应性网格的精细化。