In the resource management of wireless networks, Federated Learning has been used to predict handovers. However, non-independent and identically distributed data degrade the accuracy performance of such predictions. To overcome the problem, Federated Learning can leverage data clustering algorithms and build a machine learning model for each cluster. However, traditional data clustering algorithms, when applied to the handover prediction, exhibit three main limitations: the risk of data privacy breach, the fixed shape of clusters, and the non-adaptive number of clusters. To overcome these limitations, in this paper, we propose a three-phased data clustering algorithm, namely: generative adversarial network-based clustering, cluster calibration, and cluster division. We show that the generative adversarial network-based clustering preserves privacy. The cluster calibration deals with dynamic environments by modifying clusters. Moreover, the divisive clustering explores the different number of clusters by repeatedly selecting and dividing a cluster into multiple clusters. A baseline algorithm and our algorithm are tested on a time series forecasting task. We show that our algorithm improves the performance of forecasting models, including cellular network handover, by 43%.


翻译:在无线网络的资源管理中,联邦学习组织被用来预测交接情况。然而,非独立和分布不均的数据会降低这种预测的准确性。为了克服问题,联邦学习组织可以利用数据组合算法,并为每个组别建立一个机器学习模式。然而,传统的数据组合算法在应用到交接预测时,显示出三个主要局限性:数据隐私受侵犯的风险、集群的固定形状和集群的不适应数量。为了克服这些局限性,我们在本文件中建议采用三阶段数据组合算法,即:基于网络的组合、集群校准和集群的分类法。我们表明,基于基因对抗网络的集群保护隐私。集群校准通过修改集群与动态环境打交道。此外,分裂组合通过反复选择和将一个集群分为多个组群群来探索不同组的数目。基线算法和我们的算法在时间序列预测任务中经过测试。我们表明,我们的算法提高了预测模型的性能,包括蜂窝网络交接率,增加了43%。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月8日
Arxiv
1+阅读 · 2021年2月4日
Arxiv
45+阅读 · 2019年12月20日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年2月8日
Arxiv
1+阅读 · 2021年2月4日
Arxiv
45+阅读 · 2019年12月20日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Top
微信扫码咨询专知VIP会员