People undergoing neuromuscular dysfunctions and amputated limbs require automatic prosthetic appliances. In developing such prostheses, the precise detection of brain motor actions is imperative for the Grasp-and-Lift (GAL) tasks. Because of the low-cost and non-invasive essence of Electroencephalography (EEG), it is widely preferred for detecting motor actions during the controls of prosthetic tools. This article has automated the hand movement activity viz GAL detection method from the 32-channel EEG signals. The proposed pipeline essentially combines preprocessing and end-to-end detection steps, eliminating the requirement of hand-crafted feature engineering. Preprocessing action consists of raw signal denoising, using either Discrete Wavelet Transform (DWT) or highpass or bandpass filtering and data standardization. The detection step consists of Convolutional Neural Network (CNN)- or Long Short Term Memory (LSTM)-based model. All the investigations utilize the publicly available WAY-EEG-GAL dataset, having six different GAL events. The best experiment reveals that the proposed framework achieves an average area under the ROC curve of 0.944, employing the DWT-based denoising filter, data standardization, and CNN-based detection model. The obtained outcome designates an excellent achievement of the introduced method in detecting GAL events from the EEG signals, turning it applicable to prosthetic appliances, brain-computer interfaces, robotic arms, etc.
翻译:正在经历神经肌肉机能障碍和截肢的人需要自动假肢。在开发此类假肢时,必须精确检测大脑运动动作,这是Grasp-Lift(GAL)任务所必需的。由于电子脑细胞造影(EEEGE)的低成本和非侵入性精髓,因此在控制假体工具期间,发现运动动作是普遍可取的。这篇文章使手动活动活动(即GAL GAL检测方法)从32个通道EEEEG信号自动化。拟议的管道基本上结合了预处理和端至端检测步骤,消除了手制特征工程的要求。预处理行动包括原始信号解密,使用隐形波变换(DWT)或高通路或频过滤和数据标准化等手段。探测步骤包括:在控制假体工具控制期间,控制神经网络(CNN)或长短期内存(LSTM)的模型。所有调查都利用公开提供的SWEEEEG-GAL-GAL接口数据集,有六种不同的GAL事件。最佳实验显示,拟议的框架包括:在可操作的标准化框架中,在REWT-ROD-RMERS-Beralhe中,在S-C结果标定结果中,在RBRBRM-C结果中,在RBRM-C结果中,在S-BRBRM-C 0.9中,在标准下,一个平均结果。