The square kernel is a standard unit for contemporary CNNs, as it fits well on the tensor computation for convolution operation. However, the retinal ganglion cells in the biological visual system have approximately concentric receptive fields. Motivated by this observation, we propose to use circular kernel with a concentric and isotropic receptive field as an option for the convolution operation. We first propose a simple yet efficient implementation of the convolution using circular kernels, and empirically show the significant advantages of large circular kernels over the counterpart square kernels. We then expand the operation space of several typical Neural Architecture Search (NAS) methods with the convolutions of large circular kernels. The searched new neural architectures do contain large circular kernels and outperform the original searched models considerably. Our additional analysis also reveals that large circular kernels could help the model to be more robust to the rotated or sheared images due to their better rotation invariance. Our work shows the potential of designing new convolutional kernels for CNNs, bringing up the prospect of expanding the search space of NAS with new variants of convolutions.


翻译:方内核是当代CNN的一个标准单元,因为它在卷发操作的变速计算中非常适合。然而,生物视觉系统中的视网膜交织细胞具有大致的共心容场。受此观察的驱使,我们提议使用带有同心和异向接受场的圆心内核作为卷发行动的选项。我们首先建议使用循环内核来简单而高效地实施卷动,并从经验上显示大型圆心内核在对应的平方内核上的巨大优势。我们的工作显示,有可能设计一些典型的神经结构搜索(NAS)方法与大型圆心内核交织在一起。搜索的新神经内核结构确实包含大型圆心内核,并大大超出原始搜索模型。我们的补充分析还表明,大型圆心内核可以帮助模型对旋转或剪切成的图像更加强大,因为它们的变换性更强。我们的工作显示,为CNNIS设计的新的神经内核内核研究(NAS)将带来新的空间搜索变异的前景。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年6月6日
Arxiv
0+阅读 · 2022年6月3日
Arxiv
23+阅读 · 2022年2月24日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
0+阅读 · 2022年6月6日
Arxiv
0+阅读 · 2022年6月3日
Arxiv
23+阅读 · 2022年2月24日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
12+阅读 · 2018年9月5日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员