The advance of computer-aided detection systems using deep learning opened a new scope in endoscopic image analysis. However, the learning-based models developed on closed datasets are susceptible to unknown anomalies in complex clinical environments. In particular, the high false positive rate of polyp detection remains a major challenge in clinical practice. In this work, we release the FPPD-13 dataset, which provides a taxonomy and real-world cases of typical false positives during computer-aided polyp detection in real-world colonoscopy. We further propose a post-hoc module EndoBoost, which can be plugged into generic polyp detection models to filter out false positive predictions. This is realized by generative learning of the polyp manifold with normalizing flows and rejecting false positives through density estimation. Compared to supervised classification, this anomaly detection paradigm achieves better data efficiency and robustness in open-world settings. Extensive experiments demonstrate a promising false positive suppression in both retrospective and prospective validation. In addition, the released dataset can be used to perform 'stress' tests on established detection systems and encourages further research toward robust and reliable computer-aided endoscopic image analysis. The dataset and code will be publicly available at http://endoboost.miccai.cloud.
翻译:利用深层学习促进计算机辅助检测系统的进展,为内窥镜图像分析开辟了新的范围。然而,在封闭数据集上开发的基于学习的模型很容易在复杂的临床环境中出现未知的异常现象。特别是,聚苯胺检测的高假阳率仍然是临床实践中的一大挑战。在这项工作中,我们发布了FPPD-13数据集,该数据集提供了一个分类学和现实世界典型的假阳性案例,在现实世界的结肠镜检查中提供了计算机辅助聚苯乙烯检测中的典型假阳性案例。我们进一步提议了后热模型EndoBoost,该模块可以插入通用聚苯乙烯检测模型,以过滤错误的阳性预测。这是通过对聚苯并成的基因化学习实现的,与流动的正常化和通过密度估计拒绝假正数。与受监督的分类相比,这种异常检测模式在开放世界环境中实现了更好的数据效率和稳健。广泛的实验表明在追溯和预期的验证中都存在有希望的假阳性抑制。此外,释放的数据集可用于对固定的检测系统进行“压力测试”,并鼓励进一步研究,并在公开进行可靠地进行可靠的计算机/最终分析。