Numerous algorithms have been produced for the fundamental problem of clustering under many different notions of fairness. Perhaps the most common family of notions currently studied is group fairness, in which proportional group representation is ensured in every cluster. We extend this direction by considering the downstream application of clustering and how group fairness should be ensured for such a setting. Specifically, we consider a common setting in which a decision-maker runs a clustering algorithm, inspects the center of each cluster, and decides an appropriate outcome (label) for its corresponding cluster. In hiring for example, there could be two outcomes, positive (hire) or negative (reject), and each cluster would be assigned one of these two outcomes. To ensure group fairness in such a setting, we would desire proportional group representation in every label but not necessarily in every cluster as is done in group fair clustering. We provide algorithms for such problems and show that in contrast to their NP-hard counterparts in group fair clustering, they permit efficient solutions. We also consider a well-motivated alternative setting where the decision-maker is free to assign labels to the clusters regardless of the centers' positions in the metric space. We show that this setting exhibits interesting transitions from computationally hard to easy according to additional constraints on the problem. Moreover, when the constraint parameters take on natural values we show a randomized algorithm for this setting that always achieves an optimal clustering and satisfies the fairness constraints in expectation. Finally, we run experiments on real world datasets that validate the effectiveness of our algorithms.
翻译:已经为许多不同公平概念下的分组这一根本问题制定了大量算法。 也许,目前研究的最常见概念是群体公平,确保每个组群的相称群体代表性。 我们通过考虑集群的下游应用和如何确保群体公平性来扩大这一方向。 具体地说, 我们考虑一个共同的环境,即决策者管理集群算法,检查每个组群的中心,并为相应的组群决定适当的结果(标签 ) 。 例如,在雇用时,可能有两个结果,即正(雇用)或负(反)或负(反),每个组群将被分配到这两个结果中的一个。 为确保在这种环境下的集团公平性,我们希望通过考虑集群的下游应用和如何确保群体公平性来扩大这一方向。 我们为这些问题提供算算法,并表明与他们在集团公平集群中坚硬的对应方相比,它们允许有效的解决办法。 我们还考虑一个有良好动机的替代环境,即决策者可以自由地为集群分配标签,而不论中心在度空间中的位置如何,每个组群群组组将获得其中的一个结果。 为确保集团的公平性在这种环境上的公平性,我们希望每个组群组群体在每一个组群中都有比例上都有比例代表,但我们希望在每一个组群组群组群群群体中都有相称的集团群体中都有比例的组群体代表,在每一个组群体的组群体的集团群体的集团群体在每一个组群体在集团群体在集团群体在集团群体在集团群体中都有一定的比,我们在集团的比,在集团群体中要在集团群体上,在集团群体中,在集团群体中,我们算算进的逻辑上, 当我们算进的逻辑上, 当我们总是会在计算中, 当我们总是会中要在计算到一个令人感到一个令人着, 当我们在计算到一个很的逻辑上, 当我们总是会中, 当我们在计算到一个令人着, 当我们在计算上, 当我们在计算到一个令人着定的逻辑上, 当我们总是会的精确论论的精确定的精确定的精确论的精确论的精确论的极限上, 当我们在计算到一个最难中, 当我们在计算中, 当我们总是会比较的精确论到最难中, 当我们会比较的极限的极限