We propose novel deep joint source-channel coding (DeepJSCC) algorithms for wireless image transmission over multi-input multi-output (MIMO) Rayleigh fading channels, when channel state information (CSI) is available only at the receiver. We consider two different transmission schemes; one exploiting spatial diversity and the other one exploiting spatial multiplexing of the MIMO channel. In the diversity scheme, we utilize an orthogonal space-time block code (OSTBC) to achieve full diversity which increases the robustness of transmission against channel variations. The multiplexing scheme, on the other hand, allows the user to directly map the codeword to the antennas, where the additional degree-of-freedom is used to send more information about the source signal. Simulation results show that the diversity scheme outperforms the multiplexing scheme at lower signal-to-noise ratio (SNR) values and smaller number of receive antennas at the AP. When the number of transmit antennas is greater than two, however, the full-diversity scheme becomes less beneficial. We also show that both the diversity and multiplexing scheme can achieve comparable performance with the state-of-the-art BPG algorithm delivered at the MIMO capacity in the considered scenarios.


翻译:我们建议采用新的深层联合源-通道编码(DeepJSCC)算法,用于对多投入多输出产出(MIMO)的无线图像传输进行无线图像传输;Raylei 淡化频道,因为只有接收者才有频道状态信息(CSI),我们考虑两种不同的传输计划;一种利用空间多样性,另一种利用MIMO频道的空间多路连接;在多样性计划中,我们使用一个正方位空间时区块码(OSTBC)实现完全的多样化,从而增加传输与频道变异的强度。另一方面,多路转换计划允许用户直接绘制天线代码词图,在天线上使用额外的自由程度来发送更多关于源信号的信息。模拟结果表明,多样性计划比信号-噪音比率低的多路段计划(SNR)值和在AP接收天线的数量更少。但是,在传输天线的数量超过两个时,全维度计划则变得不那么有用。我们还表明,在IMODR多样化和多路国驱动模型中交付的多路段能力都能够与据认为的MVGVA模型实现可比性。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月20日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员