Distributed or Cell-free (CF) massive Multiple-Input, Multiple-Output (mMIMO), has been recently proposed as an answer to the limitations of the current network-centric systems in providing high-rate ubiquitous transmission. The capability of providing uniform service level makes CF mMIMO a potential technology for beyond-5G and 6G networks. The acquisition of accurate Channel State Information (CSI) is critical for different CF mMIMO operations. Hence, an uplink pilot training phase is used to efficiently estimate transmission channels. The number of available orthogonal pilot signals is limited, and reusing these pilots will increase co-pilot interference. This causes an undesirable effect known as pilot contamination that could reduce the system performance. Hence, a proper pilot reuse strategy is needed to mitigate the effects of pilot contamination. In this paper, we formulate pilot assignment in CF mMIMO as a diverse clustering problem and propose an iterative maxima search scheme to solve it. In this approach, we first form the clusters of User Equipments (UEs) so that the intra-cluster diversity maximizes and then assign the same pilots for all UEs in the same cluster. The numerical results show the proposed techniques' superiority over other methods concerning the achieved uplink and downlink average and per-user data rate.
翻译:提供统一服务水平的能力使CFMIMIMO成为5G和6G网络之外的潜在技术。获取准确的频道国家信息(CSI)对于不同的CFMMIMIMO业务至关重要。因此,利用一个上行试点培训阶段来有效估计传输渠道。现有正反向试验信号的数量有限,重新使用这些试点将增加联合试运行干扰。这造成了被称为试点污染的不良效应,可以降低系统性能。因此,需要适当的试点再利用战略来减轻试点污染的影响。在本文件中,我们将CFMIMIMO作为多样化的集群问题进行试点分配,并提出解决该问题的迭代最大搜索计划。在这种方法中,我们首先组成用户设备集群,以便尽可能扩大内部多样性,然后为所有已实现的用户链接配置相同的试点,从而降低系统性能。因此,我们需要一个适当的试点再利用战略来减轻试点污染的影响。在本文件中,我们将CFMIMIMIMIMO作为不同的组合问题进行试点分配,并提出一个解决该问题的迭代最大搜索计划。我们首先组成用户设备组群,以便将内部多样化最大化,然后为关于所有已实现的用户链接的通用链接,然后分配相同的试点。