We introduce DeepMorph, an information embedding technique for vector drawings. Provided a vector drawing, such as a Scalable Vector Graphics (SVG) file, our method embeds bitstrings in the image by perturbing the drawing primitives (lines, circles, etc.). This results in a morphed image that can be decoded to recover the original bitstring. The use-case is similar to that of the well-known QR code, but our solution provides creatives with artistic freedom to transfer digital information via drawings of their own design. The method comprises two neural networks, which are trained jointly: an encoder network that transforms a bitstring into a perturbation of the drawing primitives, and a decoder network that recovers the bitstring from an image of the morphed drawing. To enable end-to-end training via back propagation, we introduce a soft rasterizer, which is differentiable with respect to perturbations of the drawing primitives. In order to add robustness towards real-world image capture conditions, image corruptions are injected between the soft rasterizer and the decoder. Further, the addition of an object detection and camera pose estimation system enables decoding of drawings in complex scenes as well as use of the drawings as markers for use in augmented reality applications. We demonstrate that our method reliably recovers bitstrings from real-world photos of printed drawings, thereby providing a novel solution for creatives to transfer digital information via artistic imagery.


翻译:我们引入了DeepMorph, 这是矢量绘图的一种信息嵌入技术。 我们提供了一种矢量绘图, 例如可缩放矢量图形( SVG) 文件, 我们的方法通过扰动绘图原始图像( 线、 圆等), 在图像中嵌入比特字符串。 这导致一个变形图像, 可以解码以恢复原始的比特字符串。 使用的情况与众所周知的 QR 代码相似, 但我们的解决方案为创造性提供了通过自己设计的绘图传输数字信息的艺术自由。 该方法由两个神经网络组成, 它们是经过联合培训的: 一个编码网络, 将比特字符串转换成绘图原始图像( 线、 圆圈等) 。 这导致一个变形图像的变形图像网络, 可以从变形图图像图像图像图像图像图像图像图像图像图像图像图像图像图像图像图像图解图中恢复比。 为了通过后映化培训, 我们引入一个软的调调器, 它与绘制原始图像的透度不同。 为了在真实图像的图像图中添加的坚固度, 向真实图像图像图像图的粘固性网络图像图解, 通过图像图的图像图解在图像图中提供更精确的图像图解的变化的图像图解中提供更深的系统的图像图解。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月7日
Bernstein-Type Bounds for Beta Distribution
Arxiv
0+阅读 · 2021年1月6日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员