Detecting Out-of-Domain (OOD) or unknown intents from user queries is essential in a task-oriented dialog system. Traditional softmax-based confidence scores are susceptible to the overconfidence issue. In this paper, we propose a simple but strong energy-based score function to detect OOD where the energy scores of OOD samples are higher than IND samples. Further, given a small set of labeled OOD samples, we introduce an energy-based margin objective for supervised OOD detection to explicitly distinguish OOD samples from INDs. Comprehensive experiments and analysis prove our method helps disentangle confidence score distributions of IND and OOD data.\footnote{Our code is available at \url{https://github.com/pris-nlp/EMNLP2022-energy_for_OOD/}.}
翻译:在面向任务的对话系统中,检测用户询问的外部目的或未知意图至关重要。传统的软麦克斯信任分数很容易引起过度信任问题。在本文件中,我们提出一个简单但有力的基于能源的分数功能,以便在OOD样本的能量分数高于IND样本的地方检测OD。此外,鉴于有标签的OOD样本数量不多,我们引入了监督 OOD检测的基于能源的边距目标,以明确区分OOD样本和IND。全面实验和分析证明我们的方法有助于分解IND和OOD数据的信任分数分布。\footte{我们的代码可在\ur{https://github.com/pris-nlp/EMNLP2022Energy_for_OD/}查阅。}