Generative AI including large language models (LLMs) has recently gained significant interest in the geo-science community through its versatile task-solving capabilities including programming, arithmetic reasoning, generation of sample data, time-series forecasting, toponym recognition, or image classification. Most existing performance assessments of LLMs for spatial tasks have primarily focused on ChatGPT, whereas other chatbots received less attention. To narrow this research gap, this study conducts a zero-shot correctness evaluation for a set of 76 spatial tasks across seven task categories assigned to four prominent chatbots, i.e., ChatGPT-4, Gemini, Claude-3, and Copilot. The chatbots generally performed well on tasks related to spatial literacy, GIS theory, and interpretation of programming code and functions, but revealed weaknesses in mapping, code writing, and spatial reasoning. Furthermore, there was a significant difference in correctness of results between the four chatbots. Responses from repeated tasks assigned to each chatbot showed a high level of consistency in responses with matching rates of over 80% for most task categories in the four chatbots.
翻译:暂无翻译