This paper deals with a projection least squares estimator of the function $J_0$ computed from multiple independent observations on $[0,T]$ of the process $Z$ defined by $dZ_t = J_0(t)d\langle M\rangle_t + dM_t$, where $M$ is a continuous and square integrable martingale vanishing at $0$. Risk bounds are established on this estimator, on an associated adaptive estimator and on an associated discrete-time version used in practice. An appropriate transformation allows to rewrite the differential equation $dX_t = V(X_t)(b_0(t)dt +\sigma(t)dB_t)$, where $B$ is a fractional Brownian motion of Hurst parameter $H\in [1/2,1)$, as a model of the previous type. So, the second part of the paper deals with risk bounds on a nonparametric estimator of $b_0$ derived from the results on the projection least squares estimator of $J_0$. In particular, our results apply to the estimation of the drift function in a non-autonomous Black-Scholes model and to nonparametric estimation in a non-autonomous fractional stochastic volatility model.
翻译:本文涉及一个预测最小方位估计方块 $J_0美元,该函数的估算值来自对 $[0,T]$的多重独立观察 。 适当的转换允许重写由美元=J_0(t)d\langle M\rangle_t+dM_t$(t美元)定义的公式$Z$, 美元是连续的, 平方分数的马丁格量值以0.美元消失。 此估算值、 相关的适应估量器和实践中使用的相关离散时间版本设定了风险界限。 适当的转换允许重写差异方块 $dX_t = V(X_t) (b_0) dt ⁇ sgmam(t)dB_t)$, 其中$B$是 Hurst 参数的分数布朗运动 $H\ in [2,1]美元。 因此, 本文的第二部分涉及风险界限是用于一个非参数性的估算方位数 $b_0美元, 从预测的模型中推算出一个最低方位数的模型, 用于一个非方位数的模型。