The One-time-pad (OTP) was mathematically proven to be perfectly secure by Shannon in 1949. We propose to extend the classical OTP from an n-bit finite field to the entire symmetric group over the finite field. Within this context the symmetric group can be represented by a discrete Hilbert sphere (DHS) over an n-bit computational basis. Unlike the continuous Hilbert space defined over a complex field in quantum computing, a DHS is defined over the finite field GF(2). Within this DHS, the entire symmetric group can be completely described by the complete set of n-bit binary permutation matrices. Encoding of a plaintext can be done by randomly selecting a permutation matrix from the symmetric group to multiply with the computational basis vector associated with the state corresponding to the data to be encoded. Then, the resulting vector is converted to an output state as the ciphertext. The decoding is the same procedure but with the transpose of the pre-shared permutation matrix. We demonstrate that under this extension, the 1-to-1 mapping in the classical OTP is equally likely decoupled in Discrete Hilbert Space. The uncertainty relationship between permutation matrices protects the selected pad, consisting of M permutation matrices (also called Quantum permutation pad, or QPP). QPP not only maintains the perfect secrecy feature of the classical formulation but is also reusable without invalidating the perfect secrecy property. The extended Shannon perfect secrecy is then stated such that the ciphertext C gives absolutely no information about the plaintext P and the pad.
翻译:1949年香农从数学角度证明一次性版面( OTP) 完全安全。 我们提议将古典 OTP 从 n-bit 有限字段扩大到有限字段上的整个对称组。 在这种背景下, 对称组可以通过 n-bit 计算基数代表离散的 Hilbert 球(DHAF) 。 与量子计算复杂字段上定义的连续Hilbert 空间不同, DHS 定义在有限字段 GF(2) 上。 在这个DHS中, 整个对称组可以完全由n- bit 二进制矩阵的完整组合来描述。 我们证明, 完全n- bit 双双双调矩阵矩阵的完整组合可以完全描述。 普通文本的绝对加密可以通过随机从对齐组选择一个对齐矩阵矩阵来进行。 与要编码的数据相对应的计算基数矢量值乘。 然后, 产生的矢量被转换成一个输出状态 。 解码是相同的程序, 但关于共享前矩阵的转换。 我们证明, 在这个扩展的 n- b b binal mal mal rode 的精度的精度结构中, 一至 mal mal mal mal degrade malation 。 可能由 等的 。