Underwater vision is crucial for autonomous underwater vehicles (AUVs), and enhancing degraded underwater images in real-time on a resource-constrained AUV is a key challenge due to factors like light absorption and scattering, or the sufficient model computational complexity to resolve such factors. Traditional image enhancement techniques lack adaptability to varying underwater conditions, while learning-based methods, particularly those using convolutional neural networks (CNNs) and generative adversarial networks (GANs), offer more robust solutions but face limitations such as inadequate enhancement, unstable training, or mode collapse. Denoising diffusion probabilistic models (DDPMs) have emerged as a state-of-the-art approach in image-to-image tasks but require intensive computational complexity to achieve the desired underwater image enhancement (UIE) using the recent UW-DDPM solution. To address these challenges, this paper introduces UW-DiffPhys, a novel physical-based and diffusion-based UIE approach. UW-DiffPhys combines light-computation physical-based UIE network components with a denoising U-Net to replace the computationally intensive distribution transformation U-Net in the existing UW-DDPM framework, reducing complexity while maintaining performance. Additionally, the Denoising Diffusion Implicit Model (DDIM) is employed to accelerate the inference process through non-Markovian sampling. Experimental results demonstrate that UW-DiffPhys achieved a substantial reduction in computational complexity and inference time compared to UW-DDPM, with competitive performance in key metrics such as PSNR, SSIM, UCIQE, and an improvement in the overall underwater image quality UIQM metric. The implementation code can be found at the following repository: https://github.com/bachzz/UW-DiffPhys


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员