IJCAI2022推荐系统论文集锦

2022 年 5 月 20 日 机器学习与推荐算法
嘿,记得给“机器学习与推荐算法”添加星标

第31届国际人工智能联合会议(International Joint Conference on Artificial Intelligence, 简称为IJCAI)是人工智能领域最顶级的国际学术会议之一,也是CCF-A类会议。今年的IJCAI将于2022年7月23-29日在奥地利维也纳举办。在今年的4535篇投稿论文中,有大约15%的论文被接收,其中跟推荐系统相关的论文大约14篇。通过对今年的论文题目进行分析发现,对于图数据的挖掘仍然是主流,所涉及的技术涵盖多模态、多行为分析以及基于强化学习、Transformer、对抗学习等技术

通过对14篇推荐系统论文进行总结,其中包含2篇综述类论文,分别涉及推荐系统中的重排序技术[1]以及基于因果的推荐系统综述[2]。另外12篇算法类论文则包含去偏的协同过滤技术[3]、联邦推荐系统中的中毒攻击[4]、离线推荐中的选择偏差问题[5]、基于MLP结构的序列化推荐[6]、基于哈希学习的推荐算法[7,9]、结合对比学习的序列推荐[8]、异质图上的食谱推荐[10]、POI推荐[11,13]、股票分析和推荐的结合算法[12]、结合自监督与图神经网络的多行为推荐算法[14]。更具体的内容可参考下文的部分摘要内容。

1. Neural Re-ranking in Multi-stage Recommender Systems: A Review

Weiwen Liu, Yunjia Xi, Jiarui Qin, Fei Sun, Bo Chen, Weinan Zhang, Rui Zhang, Ruiming Tang

https://arxiv.org/abs/2202.06602

As the final stage of the multi-stage recommender system (MRS), re-ranking directly affects user experience and satisfaction by rearranging the input ranking lists, and thereby plays a critical role in MRS. With the advances in deep learning, neural re-ranking has become a trending topic and been widely applied in industrial applications. This review aims at integrating re-ranking algorithms into a broader picture, and paving ways for more comprehensive solutions for future research. For this purpose, we first present a taxonomy of current methods on neural re-ranking. Then we give a description of these methods along with the historic development according to their objectives. The network structure, personalization, and complexity are also discussed and compared. Next, we provide benchmarks of the major neural re-ranking models and quantitatively analyze their re-ranking performance. Finally, the review concludes with a discussion on future prospects of this field. A list of papers discussed in this review, the benchmark datasets, our re-ranking library LibRerank, and detailed parameter settings are publicly available at https://github.com/LibRerank-Community/LibRerank.

2. On the Opportunity of Causal Learning in Recommendation Systems: Foundation, Estimation, Prediction and Challenges

Peng Wu, Haoxuan Li, Yuhao Deng, Wenjie Hu, Quanyu Dai, Zhenhua Dong, Jie Sun, Rui Zhang, Xiao-Hua Zhou

https://arxiv.org/abs/2201.06716

Recently, recommender system (RS) based on causal inference has gained much attention in the industrial community, as well as the states of the art performance in many prediction and debiasing tasks. Nevertheless, a unified causal analysis framework has not been established yet. Many causal-based prediction and debiasing studies rarely discuss the causal interpretation of various biases and the rationality of the corresponding causal assumptions. In this paper, we first provide a formal causal analysis framework to survey and unify the existing causal-inspired recommendation methods, which can accommodate different scenarios in RS. Then we propose a new taxonomy and give formal causal definitions of various biases in RS from the perspective of violating the assumptions adopted in causal analysis. Finally, we formalize many debiasing and prediction tasks in RS, and summarize the statistical and machine learning-based causal estimation methods, expecting to provide new research opportunities and perspectives to the causal RS community.

3. Trading Hard Negatives and True Negatives: A Debiased Contrastive Collaborative Filtering Approach

Chenxiao Yang, Qitian Wu, Jipeng Jin, Xiaofeng Gao, Junwei Pan, Guihai Chen

https://arxiv.org/abs/2204.11752

Collaborative filtering (CF), as a standard method for recommendation with implicit feedback, tackles a semi-supervised learning problem where most interaction data are unobserved. Such a nature makes existing approaches highly rely on mining negatives for providing correct training signals. However, mining proper negatives is not a free lunch, encountering with a tricky trade-off between mining informative hard negatives and avoiding false ones. We devise a new approach named as Hardness-Aware Debiased Contrastive Collaborative Filtering (HDCCF) to resolve the dilemma. It could sufficiently explore hard negatives from two-fold aspects: 1) adaptively sharpening the gradients of harder instances through a set-wise objective, and 2) implicitly leveraging item/user frequency information with a new sampling strategy. To circumvent false negatives, we develop a principled approach to improve the reliability of negative instances and prove that the objective is an unbiased estimation of sampling from the true negative distribution. Extensive experiments demonstrate the superiority of the proposed model over existing CF models and hard negative mining methods.

4. Poisoning Deep Learning Based Recommender Model in Federated Learning Scenarios

Dazhong Rong, Qinming He, Jianhai Chen

https://arxiv.org/abs/2204.13594

Various attack methods against recommender systems have been proposed in the past years, and the security issues of recommender systems have drawn considerable attention. Traditional attacks attempt to make target items recommended to as many users as possible by poisoning the training data. Benifiting from the feature of protecting users' private data, federated recommendation can effectively defend such attacks. Therefore, quite a few works have devoted themselves to developing federated recommender systems. For proving current federated recommendation is still vulnerable, in this work we probe to design attack approaches targeting deep learning based recommender models in federated learning scenarios. Specifically, our attacks generate poisoned gradients for manipulated malicious users to upload based on two strategies (i.e., random approximation and hard user mining). Extensive experiments show that our well-designed attacks can effectively poison the target models, and the attack effectiveness sets the state-of-the-art.

5. Towards Resolving Propensity Contradiction in Offline Recommender Learning

Yuta Saito, Masahiro Nomura

https://arxiv.org/abs/1910.07295

We study offline recommender learning from explicit rating feedback in the presence of selection bias. A current promising solution for the bias is the inverse propensity score (IPS) estimation. However, the performance of existing propensity-based methods can suffer significantly from the propensity estimation bias. In fact, most of the previous IPS-based methods require some amount of missing-completely-at-random (MCAR) data to accurately estimate the propensity. This leads to a critical self-contradiction; IPS is ineffective without MCAR data, even though it originally aims to learn recommenders from only missing-not-at-random feedback. To resolve this propensity contradiction, we derive a propensity-independent generalization error bound and propose a novel algorithm to minimize the theoretical bound via adversarial learning. Our theory and algorithm do not require a propensity estimation procedure, thereby leading to a well-performing rating predictor without the true propensity information. Extensive experiments demonstrate that the proposed approach is superior to a range of existing methods both in rating prediction and ranking metrics in practical settings without MCAR data.

6. An MLP Architecture for Sequential Recommendations

Muyang Li, Xiangyu Zhao, Chuan Lyu, Minghao Zhao, Runze Wu, Ruocheng Guo

https://arxiv.org/abs/2204.11510

Self-attention models have achieved state-of-the-art performance in sequential recommender systems by capturing the sequential dependencies among user-item interactions. However, they rely on positional embeddings to retain the sequential information, which may break the semantics of item embeddings. In addition, most existing works assume that such sequential dependencies exist solely in the item embeddings, but neglect their existence among the item features. In this work, we propose a novel sequential recommender system (MLP4Rec) based on the recent advances of MLP-based architectures, which is naturally sensitive to the order of items in a sequence. To be specific, we develop a tri-directional fusion scheme to coherently capture sequential, cross-channel and cross-feature correlations. Extensive experiments demonstrate the effectiveness of MLP4Rec over various representative baselines upon two benchmark datasets. The simple architecture of MLP4Rec also leads to the linear computational complexity as well as much fewer model parameters than existing self-attention methods.

7. HCFRec: Hash Collaborative Filtering via Normalized Flow with Structural Consensus for Efficient Recommendation

Fan Wang, Weiming Liu, Chaochao Chen, Mengying Zhu, Xiaolin Zheng

8. Enhancing Sequential Recommendation with Graph Contrastive Learning

Yixin Zhang, Yong Liu, Yonghui Xu, Hao Xiong, Chenyi Lei, Wei He, Lizhen Cui, Chunyan Miao

9. Discrete Listwise Personalized Ranking for Fast Top-N Recommendation with Implicit Feedback

Fangyuan Luo, Jun Wu, Tao Wang

10. RecipeRec: A Heterogeneous Graph Learning Model for Recipe Recommendation

Yijun Tian, Chuxu Zhang, Zhichun Guo, Chao Huang, Ronald Metoyer, Nitesh V. Chawla

11. Modeling Spatio-temporal Neighbourhood for Personalized Point-of-interest Recommendation

Xiaolin Wang, Guohao Sun, Xiu FANG, Shoujin Wang, Jian Yang

12. Heterogeneous Interactive Snapshot Network for Review-Enhanced Stock Profiling and Recommendation

Heyuan Wang, Tengjiao Wang, Shun Li, Shijie Guan, Jiayi Zheng, Wei Chen

13. Next Point-of-Interest Recommendation with Inferring Multi-step Future Preferences

Lu Zhang, Zhu Sun, Ziqing Wu, Jie Zhang, Yew Soon Ong, Xinghua Qu

14. Self-supervised Graph Neural Networks for Multi-behavior Recommendation

Shuyun Gu, Xiao Wang, Chuan Shi, Ding Xiao

更多论文可参考官网链接。

https://ijcai-22.org/main-track-accepted-papers/

https://ijcai-22.org/survey-track-accepted-papers/


欢迎干货投稿 \ 论文宣传 \ 合作交流

推荐阅读

SIGIR2022 | 基于用户价格及兴趣偏好的会话推荐
SIGIR2022 | 以用户为中心的对话推荐系统
论文周报 | 推荐系统领域最新研究进展

由于公众号试行乱序推送,您可能不再准时收到机器学习与推荐算法的推送。为了第一时间收到本号的干货内容, 请将本号设为星标,以及常点文末右下角的“在看”。

喜欢的话点个在看吧👇
登录查看更多
0

相关内容

专知会员服务
26+阅读 · 2021年4月2日
近期必读的六篇 ICLR 2021【推荐系统】相关投稿论文
专知会员服务
47+阅读 · 2020年10月13日
近期必读的五篇KDD 2020【推荐系统 (RS) 】相关论文
专知会员服务
65+阅读 · 2020年8月11日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
64+阅读 · 2020年7月16日
近期必读的6篇顶会WWW2020【推荐系统】相关论文-Part3
专知会员服务
58+阅读 · 2020年4月14日
近期必读的5篇顶会WWW2020【推荐系统】相关论文-Part2
专知会员服务
70+阅读 · 2020年4月7日
专知会员服务
61+阅读 · 2020年3月19日
近期必读的6篇AI顶会WWW2020【推荐系统】相关论文
专知会员服务
57+阅读 · 2020年2月25日
KDD22 | 推荐系统论文集锦(附pdf下载)
图与推荐
2+阅读 · 2022年7月25日
KDD2022推荐系统论文集锦(附pdf下载)
机器学习与推荐算法
0+阅读 · 2022年7月23日
SIGIR2022 | 推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年4月19日
WWW2022推荐系统/计算广告论文集锦
机器学习与推荐算法
1+阅读 · 2022年3月2日
ICLR2022图神经网络论文集锦
机器学习与推荐算法
13+阅读 · 2022年2月10日
WSDM22推荐系统论文集锦,GNN推荐依然火热~
图与推荐
2+阅读 · 2022年1月20日
WSDM2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年1月19日
AAAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年1月10日
CIKM2021推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2021年10月20日
RecSys2021推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2021年8月23日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年6月14日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
17+阅读 · 2020年11月15日
Arxiv
19+阅读 · 2019年4月5日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
近期必读的六篇 ICLR 2021【推荐系统】相关投稿论文
专知会员服务
47+阅读 · 2020年10月13日
近期必读的五篇KDD 2020【推荐系统 (RS) 】相关论文
专知会员服务
65+阅读 · 2020年8月11日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
64+阅读 · 2020年7月16日
近期必读的6篇顶会WWW2020【推荐系统】相关论文-Part3
专知会员服务
58+阅读 · 2020年4月14日
近期必读的5篇顶会WWW2020【推荐系统】相关论文-Part2
专知会员服务
70+阅读 · 2020年4月7日
专知会员服务
61+阅读 · 2020年3月19日
近期必读的6篇AI顶会WWW2020【推荐系统】相关论文
专知会员服务
57+阅读 · 2020年2月25日
相关资讯
KDD22 | 推荐系统论文集锦(附pdf下载)
图与推荐
2+阅读 · 2022年7月25日
KDD2022推荐系统论文集锦(附pdf下载)
机器学习与推荐算法
0+阅读 · 2022年7月23日
SIGIR2022 | 推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年4月19日
WWW2022推荐系统/计算广告论文集锦
机器学习与推荐算法
1+阅读 · 2022年3月2日
ICLR2022图神经网络论文集锦
机器学习与推荐算法
13+阅读 · 2022年2月10日
WSDM22推荐系统论文集锦,GNN推荐依然火热~
图与推荐
2+阅读 · 2022年1月20日
WSDM2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年1月19日
AAAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年1月10日
CIKM2021推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2021年10月20日
RecSys2021推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2021年8月23日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员