Given a new dataset D and a low compute budget, how should we choose a pre-trained model to fine-tune to D, and set the fine-tuning hyperparameters without risking overfitting, particularly if D is small? Here, we extend automated machine learning (AutoML) to best make these choices. Our domain-independent meta-learning approach learns a zero-shot surrogate model which, at test time, allows to select the right deep learning (DL) pipeline (including the pre-trained model and fine-tuning hyperparameters) for a new dataset D given only trivial meta-features describing D such as image resolution or the number of classes. To train this zero-shot model, we collect performance data for many DL pipelines on a large collection of datasets and meta-train on this data to minimize a pairwise ranking objective. We evaluate our approach under the strict time limit of the vision track of the ChaLearn AutoDL challenge benchmark, clearly outperforming all challenge contenders.
翻译:鉴于新的数据集D和低计算预算,我们应如何选择一个经过预先训练的模型,以微调到D,并设置微调超参数,而不会冒超标的风险,特别是在D小的情况下?在这里,我们扩展自动机学习(自动ML),以作出这些选择。我们的域独立元学习方法学习一个零光代谢模型,该模型在测试时允许为新数据集D选择正确的深学习(DL)管道(包括经过预先训练的模型和微调超参数),而新数据集D只提供描述D的微小的元特性,例如图像分辨率或班数。为了培训这个零光模型,我们收集许多DL管道在大量收集数据集和元数据上的业绩数据,以尽量减少对齐的排名目标。我们根据ChaLearn AutoDL挑战基准的愿景轨道的严格时限评估我们的方法,明显超过所有挑战比标。