We prove that for any monotone class of finite relational structures, the first-order theory of the class is NIP in the sense of stability theory if, and only if, the collection of Gaifman graphs of structures in this class is nowhere dense. This generalises to relational structures a result previously known for graphs and answers an open question posed by Adler and Adler (2014). The result is established by the application of Ramsey-theoretic techniques and shows that the property of being NIP is highly robust for monotone classes. We also show that the model-checking problem for first-order logic is intractable on any class of monotone structures that is not (monadically) NIP. This is a contribution towards the conjecture of Bonnet et al. that the hereditary classes of structures admitting fixed-parameter tractable model-checking are precisely those that are monadically NIP.
翻译:我们证明,对于任何单一一类的有限关系结构而言,该类的第一阶理论是稳定理论意义上的国家实施计划,如果,而且只有在收集该类结构的盖夫曼图纸没有密度的情况下,该类结构的第一阶理论是国家实施计划。这种对关联结构的概括是Adler和Adler先前在图表中已知的结果,并回答了Adler和Adler(2014年)提出的一个未决问题。结果通过拉姆齐理论技术的运用而确定,并表明,作为国家实施计划的属性对于单质结构的特性是很强的。我们还表明,第一阶逻辑的模型检查问题对于任何一类(单质)非国家实施计划的单质结构都是难以解决的。这是对Bonnet等人的推测的一种贡献,即允许固定参数可移动模型检查的遗传结构类别正是单质国家实施计划。