Bayesian optimization is a popular method for solving the problem of global optimization of an expensive-to-evaluate black-box function. It relies on a probabilistic surrogate model of the objective function, upon which an acquisition function is built to determine where next to evaluate the objective function. In general, Bayesian optimization with Gaussian process regression operates on a continuous space. When input variables are categorical or discrete, an extra care is needed. A common approach is to use one-hot encoded or Boolean representation for categorical variables which might yield a {\em combinatorial explosion} problem. In this paper we present a method for Bayesian optimization in a combinatorial space, which can operate well in a large combinatorial space. The main idea is to use a random mapping which embeds the combinatorial space into a convex polytope in a continuous space, on which all essential process is performed to determine a solution to the black-box optimization in the combinatorial space. We describe our {\em combinatorial Bayesian optimization} algorithm and present its regret analysis. Numerical experiments demonstrate that our method outperforms existing methods.
翻译:Bayesian 优化是解决全球优化昂贵到评估黑盒功能的流行方法。 它依赖于目标函数的概率替代模型, 并以此为基础建立获取功能以确定下一个目标函数的下一个位置。 一般而言, 与 Gaussian 进程回归的Bayesian 优化在连续空间运作。 当输入变量是绝对或离散的时, 需要额外的注意。 一个常见的方法是使用单热编码或布林表示法来表示可能会产生 {browinatoring 爆炸} 问题的绝对变量。 在本文中, 我们展示了一种在组合空间进行巴耶斯优化的方法, 可以在大型组合空间运行。 主要的想法是使用随机绘图, 将组合空间嵌入一个连续空间的等离子体聚变体中。 在所有关键程序上, 都会对组合空间中的黑盒优化进行确定一个解决方案。 我们描述了我们的“ 组合巴伊西亚优化” 算法, 并展示了它的遗憾分析 。