In this work, we present an extension of the genetic algorithm (GA) which exploits the supervised learning technique called active subspaces (AS) to evolve the individuals on a lower dimensional space. In many cases, GA requires in fact more function evaluations than others optimization method to converge to the global optimum. Thus, complex and high-dimensional functions may result extremely demanding (from computational viewpoint) to optimize with the standard algorithm. To address this issue, we propose to linearly map the input parameter space of the original function onto its AS before the evolution, performing the mutation and mate processes in a lower dimensional space. In this contribution, we describe the novel method called ASGA, presenting differences and similarities with the standard GA method. We test the proposed method over n-dimensional benchmark functions -- Rosenbrock, Ackley, Bohachevsky, Rastrigin, Schaffer N. 7, and Zakharov -- and finally we apply it to an aeronautical shape optimization problem.


翻译:在这项工作中,我们展示了基因算法(GA)的延伸,该算法利用了所谓的主动子空间(AS)的监督下学习技术,使个人在较低维空间上演进。在许多情况下,GA实际上需要比其他的优化方法更多的功能评价,才能与全球的最佳方法趋同。因此,复杂和高维的函数可能会(从计算角度)产生极其严格的要求,以便与标准算法优化。为了解决这一问题,我们提议在进化之前将原始函数的输入参数空间线性地映射到AS上,在低维空间进行突变和配对过程。在这个贡献中,我们描述了称为ASGA的新方法,展示了与标准GA方法的不同和相似之处。我们用正维基准函数来测试拟议的方法 -- -- Rosenbrock、Ackley、Bohachevsky、Rastrigin、Schaffer N. 7和Zakharov -- -- 最后我们将其应用于一个航空形状优化问题。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员