This paper investigates how to realize better and more efficient embedding learning to tackle the semi-supervised video object segmentation under challenging multi-object scenarios. The state-of-the-art methods learn to decode features with a single positive object and thus have to match and segment each target separately under multi-object scenarios, consuming multiple times computation resources. To solve the problem, we propose an Associating Objects with Transformers (AOT) approach to match and decode multiple objects jointly and collaboratively. In detail, AOT employs an identification mechanism to associate multiple targets into the same high-dimensional embedding space. Thus, we can simultaneously process multiple objects' matching and segmentation decoding as efficiently as processing a single object. To sufficiently model multi-object association, a Long Short-Term Transformer (LSTT) is devised to construct hierarchical matching and propagation. Based on AOT, we further propose a more flexible and robust framework, Associating Objects with Scalable Transformers (AOST), in which a scalable version of LSTT is designed to enable run-time adaptation of accuracy-efficiency trade-offs. Besides, AOST introduces a better layer-wise manner to couple identification and vision embeddings. We conduct extensive experiments on multi-object and single-object benchmarks to examine AOT series frameworks. Compared to the state-of-the-art competitors, our methods can maintain times of run-time efficiency with superior performance. Notably, we achieve new state-of-the-art performance on three popular benchmarks, i.e., YouTube-VOS (86.5%), DAVIS 2017 Val/Test (87.0%/84.7%), and DAVIS 2016 (93.0%). Project page: https://github.com/z-x-yang/AOT.


翻译:本文调查如何更好和更高效地嵌入学习,以便在具有挑战性的多目标情景下解决半监督的视频对象分割。 因此, 最先进的方法可以学习用单一正对象解码特性, 从而必须在多目标假设情景下分别匹配和分割每个目标, 消耗多种时间计算资源 。 为了解决这个问题, 我们提议了一种与变压器( AOT) 连接和解码多个对象的方法。 详细来说, AOT 使用一种识别机制, 将多个目标连接到同一个高维嵌入空间。 因此, 最先进的方法可以同时处理多个目标的匹配和分割, 以处理一个单一对象的效率对象的方式进行解码。 足够模拟多目标关联, 设计一个长期的短期变压器( LSTT) 来构建等级匹配和传播。 基于 AOT, 我们进一步提议一个更灵活、更坚固的框架, 与可变压变压的变压器( AOST ), 3个可升级的LTTT( AOT) 设计新的版本, 来实现双向性更精确的升级的升级的升级的升级的升级的升级的贸易- 升级的 Veal- bal- develop- developmental- disal- disal- deal- dislationalational- dislational- disal- dislational- dislational- disal- disal- disalationalationalational- disal- disal- disal- dislational- disalvial- develmental- develdaldal- devel- deal- devel- develmental- sal- sal- saldaldal- saldaldaldaldal-sal- saldaldaldal- saldaldaldaldaldaldaldaldaldaldalbaldaldaldaldaldaldaldal- sal- sal- sal- sal- saldal- sal- sal- saldaldaldaldaldaldal- saldaldal-dal- saldal

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月3日
Arxiv
27+阅读 · 2021年11月11日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员