It is well believed that Transformer performs better in semantic segmentation compared to convolutional neural networks. Nevertheless, the original Vision Transformer may lack of inductive biases of local neighborhoods and possess a high time complexity. Recently, Swin Transformer sets a new record in various vision tasks by using hierarchical architecture and shifted windows while being more efficient. However, as Swin Transformer is specifically designed for image classification, it may achieve suboptimal performance on dense prediction-based segmentation task. Further, simply combing Swin Transformer with existing methods would lead to the boost of model size and parameters for the final segmentation model. In this paper, we rethink the Swin Transformer for semantic segmentation, and design a lightweight yet effective transformer model, called SSformer. In this model, considering the inherent hierarchical design of Swin Transformer, we propose a decoder to aggregate information from different layers, thus obtaining both local and global attentions. Experimental results show the proposed SSformer yields comparable mIoU performance with state-of-the-art models, while maintaining a smaller model size and lower compute.


翻译:人们普遍认为,变异器在语义分解方面的表现优于进化神经网络。 然而,原“视觉变异器”可能缺乏当地邻居的感化偏差,而且具有很高的时间复杂性。 最近, Swin变异器通过使用等级结构结构,在提高效率的同时,在各种视觉任务中建立了新记录。 然而,由于Swin变异器是专门设计用于图像分类的,因此在密集的基于预测的分解任务上,它可能取得不理想的性能。此外,简单地用现有方法将Swin变异器梳理 Swin变异器将会导致最终分解模型的模型大小和参数的增强。 在本文中,我们重新思考Swin变异器的语义分解,并设计一个轻巧而有效的变异模型,称为SSexurther。 在这种模型中,考虑到Swin变异形器固有的等级设计,我们建议用解码器将不同层次的信息汇总起来,从而获得本地和全球的注意。实验结果显示,拟议的Ssurferent 收益与最新模型相似的 mIOU性表现,同时保持较小的模型大小和低调。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月29日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员