Data privacy is a central problem for embodied agents that can perceive the environment, communicate with humans, and act in the real world. While helping humans complete tasks, the agent may observe and process sensitive information of users, such as house environments, human activities, etc. In this work, we introduce privacy-preserving embodied agent learning for the task of Vision-and-Language Navigation (VLN), where an embodied agent navigates house environments by following natural language instructions. We view each house environment as a local client, which shares nothing other than local updates with the cloud server and other clients, and propose a novel federated vision-and-language navigation (FedVLN) framework to protect data privacy during both training and pre-exploration. Particularly, we propose a decentralized training strategy to limit the data of each client to its local model training and a federated pre-exploration method to do partial model aggregation to improve model generalizability to unseen environments. Extensive results on R2R and RxR datasets show that under our FedVLN framework, decentralized VLN models achieve comparable results with centralized training while protecting seen environment privacy, and federated pre-exploration significantly outperforms centralized pre-exploration while preserving unseen environment privacy.


翻译:在帮助人类完成各项任务的同时,该代理人可以观察和处理用户的敏感信息,如家庭环境、人类活动等。 在这项工作中,我们为视野和语言导航(VLN)的任务引入了隐私保护代理学习,其中,一个体现代理人通过自然语言指示对室内环境进行导航;我们认为每个家庭环境都是当地客户,除了与云端服务器和其他客户进行本地更新外,别无其他内容,并提议一个新型的联盟式视觉和语言导航(FedVLN)框架,以便在培训和勘探前保护数据隐私。特别是,我们提出一个分散化的培训战略,将每个客户的数据限制在本地模型培训中,并采用联邦式的勘探前方法,进行部分模型汇总,以改进对隐蔽环境的模型可比较性。 R2R 和 RxR 数据集的广泛结果显示,在我们的FDVLN 框架内,分散化的VLN 模型在中央化的隐私保护前前,在保护中心化环境之前,同时进行集中化的探索前,同时实现可比较的结果。

0
下载
关闭预览

相关内容

【NUS-Xavier教授】注意力神经网络,79页ppt
专知会员服务
62+阅读 · 2021年11月25日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员