In this paper, we investigate the practical relevance of explainable artificial intelligence (XAI) with a special focus on the producing industries and relate them to the current state of academic XAI research. Our findings are based on an extensive series of interviews regarding the role and applicability of XAI along the Machine Learning (ML) lifecycle in current industrial practice and its expected relevance in the future. The interviews were conducted among a great variety of roles and key stakeholders from different industry sectors. On top of that, we outline the state of XAI research by providing a concise review of the relevant literature. This enables us to provide an encompassing overview covering the opinions of the surveyed persons as well as the current state of academic research. By comparing our interview results with the current research approaches we reveal several discrepancies. While a multitude of different XAI approaches exists, most of them are centered around the model evaluation phase and data scientists. Their versatile capabilities for other stages are currently either not sufficiently explored or not popular among practitioners. In line with existing work, our findings also confirm that more efforts are needed to enable also non-expert users' interpretation and understanding of opaque AI models with existing methods and frameworks.
翻译:暂无翻译