Measuring the predictability and complexity of time series using entropy is essential tool de-signing and controlling a nonlinear system. However, the existing methods have some drawbacks related to the strong dependence of entropy on the parameters of the methods. To overcome these difficulties, this study proposes a new method for estimating the entropy of a time series using the LogNNet neural network model. The LogNNet reservoir matrix is filled with time series elements according to our algorithm. The accuracy of the classification of images from the MNIST-10 database is considered as the entropy measure and denoted by NNetEn. The novelty of entropy calculation is that the time series is involved in mixing the input information in the res-ervoir. Greater complexity in the time series leads to a higher classification accuracy and higher NNetEn values. We introduce a new time series characteristic called time series learning inertia that determines the learning rate of the neural network. The robustness and efficiency of the method is verified on chaotic, periodic, random, binary, and constant time series. The comparison of NNetEn with other methods of entropy estimation demonstrates that our method is more robust and accurate and can be widely used in practice.
翻译:使用 entropy 测量时间序列的可预测性和复杂性是使用 entropy 使用时间序列测量一个非线性系统的基本工具, 设计和控制一个非线性系统。 但是, 现有方法有一些缺点, 与对方法参数的高度依赖性有关。 为了克服这些困难, 本研究提出了一种新的方法, 用于使用 LogNNet 神经网络模型来估计时间序列的英特质。 LogNNet 储量矩阵根据我们的算法以时间序列元素填充。 MNIST- 10 数据库图像分类的准确性被认为是 entropy 措施, 由 NNetEn 网络 进行说明。 酶计算的新颖性是: 时间序列涉及将存储中的输入信息混合。 更复杂的时间序列导致更高的分类精度和 NNetEn 值。 我们引入了一个新的时间序列特性,叫作时间序列学习惰性, 以决定神经网络的学习率。 该方法的坚固性和效率在混乱、 周期性、 随机性、 二元和 恒定性的时间序列上得到验证。 NNetEn 与其它的计算方法的比较可以广泛地显示我们使用的方法。