The hybrid zero dynamics control concept for bipedal walking is extended to include a non-instantaneous double support phase. A symmetric robot that consists of five rigid body segments which are connected by four actuated revolute joints is considered. Periodic walking gaits with a constant average walking speed consists of alternating single (SSP) and double support phases (DSP). Hybrid zero dynamics control designs usually assume an instantaneous DSP, which is a severe limitation. The proposed controllers use continuous SSPs and DSPs. Transitions between both phases are modeled as instantaneous events, when the rear leg lifts off at the end of the DSP and the swing leg touches down at the end of the SSP. Due to the fact that the model during the DSP has more actuators (4) than degrees of freedom (3), the system is overactuated. In order to combine it with the underactuated SSP model and then formulate a periodic walking gait, we suggest three controller designs for different applications. One with the underactuated DSP, one with the fully actuated DSP, and one with the overactuated DSP. A numerical optimization is used to generate energy efficient gaits in an offline process. According to the optimization results, artificially creating an underactuated controller for the DSP results in the most efficient gaits. Adding control tasks utilizing the full actuation or overactuation during the DSP significantly improves the gait stability.


翻译:双足行走的混合零动态控制概念扩大, 包括非即时的双向支持阶段。 考虑由5个僵硬的机身部分组成的对称机器人, 由4个自动振动的振动连接连接起来。 固定平均行走速度的周期步步步数包括交替单步( SSP) 和双向支持阶段( DSP) 。 混合零动态控制设计通常假设瞬时的DSP, 这是一个严格的限制。 拟议的控制器使用连续的 SSP 和 DSP 。 两个阶段之间的过渡都以瞬时事件为模型, 在DSP 末端起步, 摇动腿下降为5个, 在 SSP 末端, 由于DSP 期间的模型比自由度( 3个) 还要多, 因此系统被过度激活。 为了将其与未完全激活的SSP 模型结合起来, 然后为不同的应用程序设计3个控制器设计。 一个与操作不足的DSP 模拟事件发生瞬间事件, 一个与DSP 完全动作起动的DSP 以及一个与超常操作的操作结果 。 在 节制期间, 将生成的 DSP 生成一个在 优化到 节制中, 优化到 优化到 。 。 在 的 将一个操作中, 生成到 将 将 将 将 将 优化到 优化到 优化到 。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月1日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员