A recent line of work in mechanism design has focused on guaranteeing incentive compatibility for agents without contingent reasoning skills: obviously strategyproof mechanisms guarantee that it is "obvious" for these imperfectly rational agents to behave honestly, whereas non-obviously manipulable (NOM) mechanisms take a more optimistic view and ensure that these agents will only misbehave when it is "obvious" for them to do so. Technically, obviousness requires comparing certain extrema (defined over the actions of the other agents) of an agent's utilities for honest behaviour against dishonest behaviour. We present a technique for designing NOM mechanisms in settings where monetary transfers are allowed based on cycle monotonicity, which allows us to disentangle the specification of the mechanism's allocation from the payments. By leveraging this framework, we completely characterise both allocation and payment functions of NOM mechanisms for single-parameter agents. We then look at the classical setting of bilateral trade and study whether and how much subsidy is needed to guarantee NOM, efficiency, and individual rationality. We prove a stark dichotomy; no finite subsidy suffices if agents look only at best-case extremes, whereas no subsidy at all is required when agents focus on worst-case extremes. We conclude the paper by characterising the NOM mechanisms that require no subsidies whilst satisfying individual rationality.


翻译:在机制设计方面,最近的一项工作侧重于确保没有应急推理技能的代理商的激励兼容性:显然,防战略机制保证这些不完全理性的代理商“明显”诚实行事,而非明显可操纵的(NOM)机制则采取更加乐观的观点,确保这些代理商只有在“明显”的情况下才会行为不当。从技术上讲,显而易见需要比较代理商公用设施的某些极端(定义于其他代理商的行动),以便诚实地对待不诚实的行为。我们提出一种技术,用于在允许货币转移以周期性单一性为基础的环境下设计NOM机制,这使我们能够将机制分配的规格与付款脱钩。通过利用这一框架,我们完全区分了NOM机制对单方代理商的分配和支付功能的特性。我们然后研究传统的双边贸易环境,研究是否和需要多少补贴来保证NOM、效率以及个人理性性。我们证明一个赤裸的分辨;如果代理商只看最佳的极端性,则没有限定的补贴足够。我们通过利用这一框架,完全地确定NOM机制的稳定性,而我们并不要求每个代理商达成最起码的补贴。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员