Autoscaling is a critical component for efficient resource utilization with satisfactory quality of service (QoS) in cloud computing. This paper investigates proactive autoscaling for widely-used scaling-per-query applications where scaling is required for each query, such as container registry and function-as-a-service (FaaS). In these scenarios, the workload often exhibits high uncertainty with complex temporal patterns like periodicity, noises and outliers. Conservative strategies that scale out unnecessarily many instances lead to high resource costs whereas aggressive strategies may result in poor QoS. We present RobustScaler to achieve superior trade-off between cost and QoS. Specifically, we design a novel autoscaling framework based on non-homogeneous Poisson processes (NHPP) modeling and stochastically constrained optimization. Furthermore, we develop a specialized alternating direction method of multipliers (ADMM) to efficiently train the NHPP model, and rigorously prove the QoS guarantees delivered by our optimization-based proactive strategies. Extensive experiments show that RobustScaler outperforms common baseline autoscaling strategies in various real-world traces, with large margins for complex workload patterns.
翻译:在云计算中,自动调整是高效资源利用的一个关键组成部分,其服务质量令人满意。本文件调查了在需要每个查询(如集装箱登记和功能为服务(FaAS))需要规模的每个查询中,对广泛使用的按比例计算应用进行主动自动推广。在这些假设中,工作量往往具有高度不确定性,具有复杂的时间模式,如周期性、噪音和外部线等。保守战略不必要地扩大许多实例,会导致高资源成本,而积极战略则可能导致不良的QOS。我们介绍RobustSer,以实现成本与QOS之间的更优交易。具体地说,我们设计了一个新型自动升级框架,其基础是非同源性Poisson进程(NHPP)建模和超声调节,以及超声调节优化。此外,我们开发了专门的倍数交替方向方法,以有效培训NHPPM模型,并严格证明我们基于优化的积极战略提供的QOS保证。大规模实验显示,RobustSerger超越了在现实世界的复杂基线轨迹上,具有共同的复杂轨迹。