Knowledge graphs are an expressive and widely used data structure due to their ability to integrate data from different domains in a sensible and machine-readable way. Thus, they can be used to model a variety of systems such as molecules and social networks. However, it still remains an open question how symbolic reasoning could be realized in spiking systems and, therefore, how spiking neural networks could be applied to such graph data. Here, we extend previous work on spike-based graph algorithms by demonstrating how symbolic and multi-relational information can be encoded using spiking neurons, allowing reasoning over symbolic structures like knowledge graphs with spiking neural networks. The introduced framework is enabled by combining the graph embedding paradigm and the recent progress in training spiking neural networks using error backpropagation. The presented methods are applicable to a variety of spiking neuron models and can be trained end-to-end in combination with other differentiable network architectures, which we demonstrate by implementing a spiking relational graph neural network.
翻译:知识图形是一种表达式和广泛使用的数据结构,因为它们能够以合理和机器可读的方式整合不同领域的数据。 因此,它们可以用来模拟分子和社交网络等各种系统。 但是,它仍然是一个未决问题,如何在喷射系统中实现象征性推理,从而如何将神经网络喷射到此类图形数据中。 在这里,我们扩展了以前关于基于钉钉钉钉的图形算法的工作,展示了如何使用喷射神经元编码符号和多关系信息,从而允许对像通过喷射神经网络绘制知识图形这样的象征性结构进行推理。 引入的框架是通过将图形嵌入模式与最近利用错误反对称来培训神经网络的进展结合起来而得以实现的。 提出的方法适用于各种喷射神经模型,并且可以与其他不同的网络结构一起培训端对端,我们通过实施喷射直线图神经网络来证明这一点。