The dual formulation for linear elasticity, in contrast to the primal formulation, is not affected by locking, as it is based on the stresses as main unknowns. Thus it is quite attractive for nearly incompressible and incompressible materials. Discretization with mixed finite elements will lead to -- possibly large -- linear saddle point systems with a particular structure. Whereas efficient multigrid methods exist for solving problems in mixed plane elasticity, to the knowledge of the authors, no multigrid methods are readily available for the general dual formulation. Two are the main challenges in constructing a multigrid method for the dual formulation for linear elasticity. First, in the incompressible limit, the matrix block related to the stress is semi-positive definite. Second, the stress belongs to $\textbf{H}_{\text{div}}$ and standard smoothers, working for $\textbf{H}^1$ regular problems, cannot be applied. We present a novel patch-based smoother for the dual formulation for linear elasticity. We discuss different types of local boundary conditions for the patch subproblems. Based on our patch-smoother, we build a multigrid method for the solution of the resulting saddle point problem and investigate its efficiency and robustness. Numerical experiments show that Robin conditions best fit the multigrid framework, leading eventually to multigrid performance.
翻译:线性弹性的双重配方,与原始配方相比,没有受到锁定的影响,因为它是以主要未知物为主的压强为基础。 因此, 它对于几乎不压缩和不压缩的材料具有相当的吸引力。 混杂的有限元素的分解将会导致 -- -- 可能是大型的 -- -- 线性垫点系统, 具有某种特定结构。 虽然存在解决混合平面弹性问题的有效多格方法, 但对于作者来说, 普通双向配方没有现成的多格方法。 两种是建立双向弹性双向配方的多格方法方面的主要挑战。 首先, 在不可压缩的限值中, 与压力有关的矩阵块是半肯定的。 其次, 压力属于 $\ textb{ h{ text{div}$ 和标准平滑器, 用于解决混合平板弹性问题, 对作者来说, 我们为直线弹性的双重配方配方提供了新的补丁法。 我们讨论的是两种不同的本地边界条件类型, 用于补齐的亚格的亚格弹性弹性配方, 与压力制的加式加式的加固的加式加式加固度框架最终展示了我们的加式的加固的加固的加固的加固的加固的加固的加固的加固的加固度, 的加固的加固的加固的加固的加固的加固的加固的加固的加固的加固的加固度框架, 。