While GANs can produce photo-realistic images in ideal conditions for certain domains, the generation of full-body human images remains difficult due to the diversity of identities, hairstyles, clothing, and the variance in pose. Instead of modeling this complex domain with a single GAN, we propose a novel method to combine multiple pretrained GANs, where one GAN generates a global canvas (e.g., human body) and a set of specialized GANs, or insets, focus on different parts (e.g., faces, shoes) that can be seamlessly inserted onto the global canvas. We model the problem as jointly exploring the respective latent spaces such that the generated images can be combined, by inserting the parts from the specialized generators onto the global canvas, without introducing seams. We demonstrate the setup by combining a full body GAN with a dedicated high-quality face GAN to produce plausible-looking humans. We evaluate our results with quantitative metrics and user studies.


翻译:虽然全球大气监测网可以在某些领域的理想条件下制作摄影现实图像,但由于身份、发型、服装和面貌的差异,生成全体人类图像仍然困难。我们不以单一全球大气监测网作为这一复杂域的模型,而是提出一种新颖的方法,将多个经过预先训练的全球大气监测网结合起来,让一个全球大气监测网生成一个全球画布(例如人体)和一套专门的全球大气监测网,或一套专门性全球大气监测网,侧重于可以无缝地插入全球画布的不同部分(例如脸部、鞋部),我们把问题模拟为共同探索各个潜在空间,以便将生成的图像合并起来,方法是将专门生成器的部件插入全球帆布,而不引入缝合器。我们通过将一个完整的全球大气监测网与一个专门高品质的面部合在一起来展示这种设置。我们用定量指标和用户研究来评估我们的结果。

1
下载
关闭预览

相关内容

【CVPR2022】用于全身图像生成的 InsetGAN
专知会员服务
25+阅读 · 2022年3月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
综述:Image Caption 任务之语句多样性
PaperWeekly
22+阅读 · 2018年11月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
VIP会员
相关VIP内容
【CVPR2022】用于全身图像生成的 InsetGAN
专知会员服务
25+阅读 · 2022年3月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
综述:Image Caption 任务之语句多样性
PaperWeekly
22+阅读 · 2018年11月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员