While GANs can produce photo-realistic images in ideal conditions for certain domains, the generation of full-body human images remains difficult due to the diversity of identities, hairstyles, clothing, and the variance in pose. Instead of modeling this complex domain with a single GAN, we propose a novel method to combine multiple pretrained GANs, where one GAN generates a global canvas (e.g., human body) and a set of specialized GANs, or insets, focus on different parts (e.g., faces, shoes) that can be seamlessly inserted onto the global canvas. We model the problem as jointly exploring the respective latent spaces such that the generated images can be combined, by inserting the parts from the specialized generators onto the global canvas, without introducing seams. We demonstrate the setup by combining a full body GAN with a dedicated high-quality face GAN to produce plausible-looking humans. We evaluate our results with quantitative metrics and user studies.
翻译:虽然全球大气监测网可以在某些领域的理想条件下制作摄影现实图像,但由于身份、发型、服装和面貌的差异,生成全体人类图像仍然困难。我们不以单一全球大气监测网作为这一复杂域的模型,而是提出一种新颖的方法,将多个经过预先训练的全球大气监测网结合起来,让一个全球大气监测网生成一个全球画布(例如人体)和一套专门的全球大气监测网,或一套专门性全球大气监测网,侧重于可以无缝地插入全球画布的不同部分(例如脸部、鞋部),我们把问题模拟为共同探索各个潜在空间,以便将生成的图像合并起来,方法是将专门生成器的部件插入全球帆布,而不引入缝合器。我们通过将一个完整的全球大气监测网与一个专门高品质的面部合在一起来展示这种设置。我们用定量指标和用户研究来评估我们的结果。