We prove continuous symmetry breaking in three dimensions for a special class of disordered models described by the Nishimori line. The spins take values in a group such as $\mathbb{S}^1$, $SU(n)$ or $SO(n)$. Our proof is based on a theorem about group synchronization proved by Abbe, Massouli\'e, Montanari, Sly and Srivastava [AMM+18]. It also relies on a gauge transformation acting jointly on the disorder and the spin configurations due to Nishimori [Nis81, GHLDB85]. The proof does not use reflection positivity. The correlation inequalities of [MMSP78] imply symmetry breaking for the classical $XY$ model without disorder.
翻译:我们证明了对于一类特殊的由Nishimori线描述的无序模型,其在三维空间中具有连续对称性破缺。其自旋取值于群如$\mathbb{S}^1$、$SU(n)$或$SO(n)$。我们的证明基于由Abbe、Massouli\'e、Montanari、Sly和Srivastava [AMM+18]证明的关于群同步的定理。它还依赖于由Nishimori [Nis81,GHLDB85]提出的同时作用于无序和自旋构型的规范变换。证明不使用反射正定性。[MMSP78]的相关不等式暗示着没有无序时经典$XY$模型的对称性破缺。