Estimating 3D humans from images often produces implausible bodies that lean, float, or penetrate the floor. Such methods ignore the fact that bodies are typically supported by the scene. A physics engine can be used to enforce physical plausibility, but these are not differentiable, rely on unrealistic proxy bodies, and are difficult to integrate into existing optimization and learning frameworks. In contrast, we exploit novel intuitive-physics (IP) terms that can be inferred from a 3D SMPL body interacting with the scene. Inspired by biomechanics, we infer the pressure heatmap on the body, the Center of Pressure (CoP) from the heatmap, and the SMPL body's Center of Mass (CoM). With these, we develop IPMAN, to estimate a 3D body from a color image in a "stable" configuration by encouraging plausible floor contact and overlapping CoP and CoM. Our IP terms are intuitive, easy to implement, fast to compute, differentiable, and can be integrated into existing optimization and regression methods. We evaluate IPMAN on standard datasets and MoYo, a new dataset with synchronized multi-view images, ground-truth 3D bodies with complex poses, body-floor contact, CoM and pressure. IPMAN produces more plausible results than the state of the art, improving accuracy for static poses, while not hurting dynamic ones. Code and data are available for research at https://ipman.is.tue.mpg.de.
翻译:从图像中估计3D人体姿态时,通常会产生倾斜、飘浮或穿透地板的非实际情况。这些方法忽略了物体通常由场景支持的事实。物理引擎可用于强制执行物理合理性,但它们不可微分,依赖于不真实的代理身体,并且难以集成到现有的优化和学习框架中。相比之下,我们利用可从与场景互动的3D SMPL体中推断出的新颖直观物理(IP)术语。受生物力学启发,我们推断出沿着身体的压力热图、热力图中的压力中心(CoP)和SMPL体的质心(CoM)。基于此,我们开发了IPMAN,通过鼓励合理的地板接触和重叠的CoP和CoM,从彩色图像中估计一个“稳定”的3D身体。我们的IP术语直观、易于实施、计算速度快、可微分,并且可以集成到现有的优化和回归方法中。我们在标准数据集和MoYo上对IPMAN进行了评估,MoYo是具有同步多视图图像、复杂姿势、身体-地板接触、CoM和压力的真实3D身体的新数据集。在静止姿势方面,IPMAN产生比现有技术更合理的结果,而在动态姿势方面不会降低精度。研究的代码和数据可在https://ipman.is.tue.mpg.de上获得。