Generative Adversarial Network (GAN) based localized image editing can suffer ambiguity between semantic attributes. We thus present a novel objective function to evaluate the locality of an image edit. By introducing the supervision from a pre-trained segmentation network and optimizing the objective function, our framework, called Locally Effective Latent Space Direction (LELSD), is applicable to any dataset and GAN architecture. Our method is also computationally fast and exhibits a high extent of disentanglement, which allows users to interactively perform a sequence of edits on an image. Our experiments on both GAN-generated and real images qualitatively demonstrate the high quality and advantages of our method.
翻译:基于本地化图像的生成对流网络(GAN) 本地化图像编辑可能会在语义属性之间产生模糊性。 因此,我们提出了一个新的目标功能来评价图像编辑的位置。 通过引入预先培训的分解网络的监督和优化目标功能,我们的框架(称为本地有效边端空间方向(LELSD))适用于任何数据集和 GAN 结构。 我们的方法也是快速的计算,并展示了高度的分解,使用户能够在图像上交互进行一系列的编辑。 我们在GAN 生成的和真实图像上的实验从质量上证明了我们方法的高质量和优势。