Deep learning-based image fusion approaches have obtained wide attention in recent years, achieving promising performance in terms of visual perception. However, the fusion module in the current deep learning-based methods suffers from two limitations, \textit{i.e.}, manually designed fusion function, and input-independent network learning. In this paper, we propose an unsupervised adaptive image fusion method to address the above issues. We propose a feature mutual mapping fusion module and dual-branch multi-scale autoencoder. More specifically, we construct a global map to measure the connections of pixels between the input source images. % The found mapping relationship guides the image fusion. Besides, we design a dual-branch multi-scale network through sampling transformation to extract discriminative image features. We further enrich feature representations of different scales through feature aggregation in the decoding process. Finally, we propose a modified loss function to train the network with efficient convergence property. Through sufficient training on infrared and visible image data sets, our method also shows excellent generalized performance in multi-focus and medical image fusion. Our method achieves superior performance in both visual perception and objective evaluation. Experiments prove that the performance of our proposed method on a variety of image fusion tasks surpasses other state-of-the-art methods, proving the effectiveness and versatility of our approach.
翻译:近些年来,深层次的基于学习的图像聚合方法得到广泛关注,在视觉感知方面取得了有希望的成绩。然而,目前深层次的基于学习的方法中的聚合模块存在两个局限性,即:\textit{i.e.},人工设计的聚合功能,以及投入独立的网络学习。在本文中,我们提出了一种不受监督的适应性图像聚合方法,以解决上述问题。我们建议了一个特殊的相互绘图聚合模块和双分支多级多级自动编码器。更具体地说,我们构建了一个全球地图,以测量输入源图像之间的像素连接。% 发现的映像关系引导着图像聚合。此外,我们设计了一个双层多级多级多级网络,通过取样转换来提取歧视性图像特征特征特征。我们进一步通过解码过程中的特征聚合来丰富不同规模的特征表现。最后,我们提出一个经修改的损失功能,以对网络进行有效的趋同特性进行培训。通过对红外和可见图像数据集进行充分的培训,我们的方法还显示多基面和医学图像融合的优异性性表现。我们的方法在视觉认知和目的反向性分析方法上取得了优优优的成绩。