Stereo-based 3D detection aims at detecting 3D object bounding boxes from stereo images using intermediate depth maps or implicit 3D geometry representations, which provides a low-cost solution for 3D perception. However, its performance is still inferior compared with LiDAR-based detection algorithms. To detect and localize accurate 3D bounding boxes, LiDAR-based models can encode accurate object boundaries and surface normal directions from LiDAR point clouds. However, the detection results of stereo-based detectors are easily affected by the erroneous depth features due to the limitation of stereo matching. To solve the problem, we propose LIGA-Stereo (LiDAR Geometry Aware Stereo Detector) to learn stereo-based 3D detectors under the guidance of high-level geometry-aware representations of LiDAR-based detection models. In addition, we found existing voxel-based stereo detectors failed to learn semantic features effectively from indirect 3D supervisions. We attach an auxiliary 2D detection head to provide direct 2D semantic supervisions. Experiment results show that the above two strategies improved the geometric and semantic representation capabilities. Compared with the state-of-the-art stereo detector, our method has improved the 3D detection performance of cars, pedestrians, cyclists by 10.44%, 5.69%, 5.97% mAP respectively on the official KITTI benchmark. The gap between stereo-based and LiDAR-based 3D detectors is further narrowed.


翻译:以立体雷达为基础的立体雷达检测旨在利用中间深度地图或隐含的立体深度图或3D几何图解,探测3D物体从立体图像中捆绑盒,这为3D感知提供了低成本的解决方案。然而,其性能仍低于基于立体雷达的检测算法。为检测和定位精确的立体成像框,基于立体雷达的模型可以将基于立体雷达点云的精确天体界限和表面正常方向编码。然而,基于立体探测器的检测结果很容易受到由于立体匹配限制而造成的错误深度特征的影响。为解决这一问题,我们提议LIGA-Stereo(LiDAR测地学探测器)在基于立体雷达的高级几度测算和立体仪检测算模型的指导下学习立体3D探测器。此外,我们发现基于立体雷达的立体探测器无法从间接的3D级监控中有效地了解语体特征。我们附上一个基于立体探测器的辅助性2D检测头,以提供直接的2D语义监督。实验结果表明,以上两项战略在5-D级测地-D测距和测距轨道3D探测器之间分别改进了5-D的测距和测距方法。

1
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
专知会员服务
109+阅读 · 2020年3月12日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关VIP内容
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
专知会员服务
109+阅读 · 2020年3月12日
相关资讯
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员