项目名称: 压电智能作动器的高保真完整非线性动力学建模和高精度多通道运动协同同步控制系统一体化优化设计

项目编号: No.11472090

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 陕晋军

作者单位: 哈尔滨工业大学

项目金额: 75万元

中文摘要: 近年来,智能材料及结构被越来越多地应用于实现传感、控制及驱动。然而,智能材料所固有的非线性特性,如迟滞、蠕变、温度等,制约了其进一步的应用。本项目以压电作动器用于超高精度运动控制为研究对象,系统性地研究其中涉及的复杂动力学建模和控制器设计等问题。首先,根据非线性动力学的实际物理意义,使用分数阶理论及麦克斯韦尔方程建立高保真动力学模型,通过实验的手段对模型进行验证及修正以用于控制器设计;其次,依据所得到的动力学模型,分别设计了前馈及反馈鲁棒控制器以实现超高精度运动控制;再次,针对某多谱段空间光谱仪,设计高效、鲁棒同步协同控制律来控制多个压电作动器以实现镜面之间的纳米级运动及平行度;最后,我们将开展充分的试验研究来验证及完善理论以用于实际应用。本项目将解决压电智能材料应用中最基础和关键的问题-动力学建模、控制器设计及实现,为压电智能结构成功应用提供理论和技术支撑,具有重要的学术和实用价值。

中文关键词: 智能结构;动力学建模;非线性控制;非线性动力学;同步动力学

英文摘要: In recent years, smart materials and structures have been utilized more and more extensively to perform sensing, control and actuation. However, the inherent nonlinearities of smart materials, such as hysteresis, creep, dynamic effects and temperature change hinder the scope of their applications. This project focuses on ultra-high precision motion control using piezoelectric actuators and systematically investigates the complicated dynamics modeling and control system design. Firstly, the high-fidelity dynamics model is derived using fractional-order theory and Maxwell equation, based on the real physical meaning of the nonlinearities. This model is then verified and corrected through experiments for control system design purpose. Secondly, based on the obtained dynamics model, we will design both feedforward and feedback controller for ultra-high precision motion control. Thirdly, for a kind of multi-spectrum space spectrometer, an effective robust synchronized cooperative controller is designed to realize nano-meter motion between two mirrors and guarantee the motion parallelism between them. Finally, sufficient experiments will be conducted to validate and complete the theory proposed in this project for practical applications. This project aims at solving some fundamental and key problems in the application of piezoelectric smart materials, i.e. dynamics modeling, control system design and its implementation. This research will provide theoretical and technical support for the successful application of smart piezoelectric structures. It has great importance of academic and practical values.

英文关键词: Smart structure;Dynamics modeling;Nonlinear control;Nonlinear dynamics;Synchornozation Dynamics

成为VIP会员查看完整内容
0

相关内容

清华大学:从单体仿生到群体智能
专知会员服务
65+阅读 · 2022年2月9日
类脑超大规模深度神经网络系统
专知会员服务
52+阅读 · 2022年1月21日
专知会员服务
23+阅读 · 2021年6月9日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
129+阅读 · 2021年2月17日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
专知会员服务
33+阅读 · 2020年11月26日
清华大学:从单体仿生到群体智能
专知
15+阅读 · 2022年2月9日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
【泡泡图灵智库】协同视觉-惯性SLAM
泡泡机器人SLAM
29+阅读 · 2019年9月6日
计算机视觉方向简介 | 视觉惯性里程计(VIO)
计算机视觉life
64+阅读 · 2019年6月16日
无人驾驶仿真软件
智能交通技术
21+阅读 · 2019年5月9日
VALSE 2019 | 与商汤科技共话三维视觉最新科技
商汤科技
12+阅读 · 2019年4月17日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
58+阅读 · 2021年11月15日
小贴士
相关VIP内容
清华大学:从单体仿生到群体智能
专知会员服务
65+阅读 · 2022年2月9日
类脑超大规模深度神经网络系统
专知会员服务
52+阅读 · 2022年1月21日
专知会员服务
23+阅读 · 2021年6月9日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
129+阅读 · 2021年2月17日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
专知会员服务
33+阅读 · 2020年11月26日
相关资讯
清华大学:从单体仿生到群体智能
专知
15+阅读 · 2022年2月9日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
【泡泡图灵智库】协同视觉-惯性SLAM
泡泡机器人SLAM
29+阅读 · 2019年9月6日
计算机视觉方向简介 | 视觉惯性里程计(VIO)
计算机视觉life
64+阅读 · 2019年6月16日
无人驾驶仿真软件
智能交通技术
21+阅读 · 2019年5月9日
VALSE 2019 | 与商汤科技共话三维视觉最新科技
商汤科技
12+阅读 · 2019年4月17日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员