项目名称: 基于聚合物互穿网络结构纳米复合材料的包埋型微结构的多光子加工与性能研究

项目编号: No.51473176

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 金峰

作者单位: 中国科学院理化技术研究所

项目金额: 85万元

中文摘要: 聚合物有源光子学器件是全光集成领域的研究热点。同时提高透明聚合物中局部微区域的折射率和光学增益特性,是在聚合物中实现可集成的有源光子学器件的关键。本项目拟采用紫外曝光技术与多光子加工技术相结合的方法,在透明聚合物中形成微纳尺度的包埋型聚合物互穿网络结构,并在其中原位生成半导体纳米粒子,同时赋予其高折射率和荧光发光特性。探索材料种类和激光加工参数对聚合物互穿网络结构的微区尺寸、成分的空间分布以及网络交联密度等参数的影响。进一步,考察半导体纳米粒子的尺寸、分布、浓度以及发光特性等参数对聚合物互穿网络结构的依赖性。在此基础上,系统地研究含有半导体纳米粒子的聚合物互穿网络结构中光与物质相互作用原理,为聚合物有源光子学器件的构筑和集成提供新的研究方法和技术途径。本项目研究工作具有原始创新性,将对全光集成技术的发展产生重要的推动作用。

中文关键词: 聚合物互穿网络结构;纳米复合材料;包埋型微结构;多光子加工

英文摘要: Polymeric active devices are the hot topic in the all-optical integration technology. The key point to realize the active devices in polymers is simultaneous enhancement of the refractive index and optical gain properties. The studies of this project will change the refractive index and optical properties of the local regions embedded inside the transparent polymer by introducing semiconductor nanoparticles using in-situ synthesis into the interpenetrated polymer network, which is fabricated via the combination of the UV and multi-photon induced polymerization. We will investigate the influence of the materials and laser parameters on the size, component, and cross-linking intensity of the interpenetrated polymer network. Furthermore, we will study the dependence of the size, distribution, concentration and optical properties of the semiconductor nanoparticels on the interpenetrated polymer network. On the basis of this, we will demonstrate the interaction of the optics and matter in the interpenetrated polymer network containing semiconductor nanoparticles. The studies in this project will provide novel ideas and important strategies for the development and integration of the polymeric active devices, and promote the development of the all-optical integration.

英文关键词: interpenetrating polymer networks;nanocomposite;embedded microstructure;multi-photon fabrication

成为VIP会员查看完整内容
0

相关内容

专知会员服务
52+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
27+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年5月1日
【CVPR2021】神经网络中的知识演化
专知会员服务
24+阅读 · 2021年3月11日
专知会员服务
28+阅读 · 2021年2月26日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
57+阅读 · 2021年5月3日
小贴士
相关VIP内容
专知会员服务
52+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
27+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年5月1日
【CVPR2021】神经网络中的知识演化
专知会员服务
24+阅读 · 2021年3月11日
专知会员服务
28+阅读 · 2021年2月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员