Depth prediction is a critical problem in robotics applications especially autonomous driving. Generally, depth prediction based on binocular stereo matching and fusion of monocular image and laser point cloud are two mainstream methods. However, the former usually suffers from overfitting while building cost volume, and the latter has a limited generalization due to the lack of geometric constraint. To solve these problems, we propose a novel multimodal neural network, namely UAMD-Net, for dense depth completion based on fusion of binocular stereo matching and the weak constrain from the sparse point clouds. Specifically, the sparse point clouds are converted to sparse depth map and sent to the multimodal feature encoder (MFE) with binocular image, constructing a cross-modal cost volume. Then, it will be further processed by the multimodal feature aggregator (MFA) and the depth regression layer. Furthermore, the existing multimodal methods ignore the problem of modal dependence, that is, the network will not work when a certain modal input has a problem. Therefore, we propose a new training strategy called Modal-dropout which enables the network to be adaptively trained with multiple modal inputs and inference with specific modal inputs. Benefiting from the flexible network structure and adaptive training method, our proposed network can realize unified training under various modal input conditions. Comprehensive experiments conducted on KITTI depth completion benchmark demonstrate that our method produces robust results and outperforms other state-of-the-art methods.


翻译:深度预测是机器人应用中的一个关键问题,特别是自主驱动。一般而言,基于双筒立体相匹配以及单镜图像和激光点云融合的深度预测是两种主流方法。然而,前者通常在建筑成本量的同时会受到过度装配,而后者则由于缺乏几何限制而具有有限的概括性。为了解决这些问题,我们提议建立一个新型的多式联运神经网络,即UAMD-Net,以基于双筒立体配对接和稀疏云的微弱限制进行密集深度完成。具体地说,稀露点云被转换成稀薄深度地图,并发送到带有双筒图像的多式联运特征编码器(MFE),建造一个跨模式成本量。然后,由于缺乏几何几何几度限制,后者将进一步被广泛处理。此外,现有的多式联运方法忽视了模式依赖性的问题,也就是说,当某种模式投入存在问题时,该网络将无法运作。因此,我们提出了一个新的培训战略,称为Modal-投射法,使网络能够适应性地训练多式的多式模型,从而实现我们所拟采用的具体标准化方法,从而在具体完成方法下实现我们的具体的模型培训方法。

1
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月3日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员