项目名称: 求解全局优化问题的滤子方法及其应用
项目编号: No.11271128
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 王薇
作者单位: 华东理工大学
项目金额: 45万元
中文摘要: 本项目考虑将滤子技术应用到求解非凸全局优化的一些算法:填充函数、打洞函数、遗传算法等,给出新的算法,讨论性质,并将它们应用在经济批量模型求解等实际问题中,同时对某些特殊规划寻求可以成为算法终止准则的全局最优条件。虽然求解无约束的非凸全局优化问题已有了一些方法,但仍有许多问题需要解决,而且对约束全局问题的研究仍然比较少。滤子方法是求解约束优化局部最优解的一个技巧,因其良好的数值效果得到大家的认可。而填充函数方法和遗传算法是求解全局优化问题的有效算法。我们将一方面深化和完善对填充函数方法和遗传方法的研究,另一方面利用滤子的过滤特性提出全新的算法,证明方法的理论性质,有效处理局部极小点出现在边界上对求解带来的困难,分析方法在实际应用中的计算效果;尝试遗传算法和填充函数方法的结合,提高全局问题的效率。同时在理论上建立不用Lagrange乘子,只用问题本身的数据来表示约束不定二次规划的全局最优条件。
中文关键词: 全局优化;滤子技术;辅助函数;随机算法;最优性条件
英文摘要: The main consideration of the item is how to use the filter technique for some algorithms, such as filled function method, genetic algorithm so that to solve the noncovex global optimization. The new algorithms will be presented and their characters will be styded in the item. We are also planning to apply the new algorithms into some practical problems, such as ecnomical lotting size model. At the same time, we will find several globally optimal conditions for some special programming in order to make them be the convergence criterion of the algorithm. There exists a lot of methods for unconstrained global optimization, but many problems need dealing with yet. Furthmore, there still exists a few of research result for constraied global optimizations. So, it is a important work how to use the efective methods to solve the nonconvex optimizations in the good way. The filter method is a technique for finding constrained local minimizer, and it is recognized because of its nice behavior in numerical caculation. On the other hand , the filled functions and the genetic algorithm are the practical method for global optimization. We will deepen and perfect the study on filled function and genetic algorithm. at the same time, the new algorithm will be presented using the filtration characters of the filter and the pro
英文关键词: Global optimiation;Filter technique;Auxiliary function;Stochastic algorithm;Optimality condition