项目名称: 具有复杂相关结构时空模型的非参数估计与预测

项目编号: No.11301073

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 汪红霞

作者单位: 东南大学

项目金额: 22万元

中文摘要: 时空数据统计分析在环境科学、地球科学、医药领域、经济科学等许多领域中有重要应用。时空数据大都具有复杂的相关结构。本项目研究具有复杂相关结构的时空模型的有效非参数估计、预测以及应用问题。首先研究有具体相关结构的时空模型的统计推断,包括提出有效的统计量及其大样本性质;其次研究具有一般相关性结构的时空数据的估计与预测问题;最后将我们的方法应用到实际问题中。由于时空数据的复杂相关性和时间与空间的本质区别,使这些问题的研究产生很大的困难。目前现有统计方法在时空数据中的套用已广泛展开,尚缺乏适合于时空数据特点的方法和作为统计推断的理论支持的统计量性质的成果。本项目将利用函数逼近和数学规划的理论以及迭代的方法来进行研究。期望通过这一研究,解决时空数据统计中一些重要问题,使相应实际问题得到更完满的解决,并摸索出一条研究这类复杂问题的新路子。

中文关键词: 时空模型;非参数方法;时空相关性;时空异质性;大样本性质

英文摘要: Spatio-temporal data analysis is widely required in enviromenal science,earth-science, medical science, economics and many other fields. Spatio-temporal data usually involve complex correlated structures. This project will study how to propose more efficient nonparametric estimation and prediction methods for spatio-temporal models with complex correlation structures as well as the application problems. At first,this project will study statistical inference of spatio-temporal models with specific correlation structures, including proposing effective statistics and investigating their large sample properties ; Secondly, this project will study the estimation and prediction problems for spatio-temporal models with general correlation structures; Finally, the proposed approaches will be applied to practical problems. Due to the complex correlation of the spatio-temporal data and the essential difference between space and time, the research of these problems bears some hard difficulties. So far, the existing statistical methods have been applied mechanically to spatio-temporal data widely, but it lacks of the methods that are suitable for spatio-temporal data and lacks of theoretical supports of related statistical inference. In view of the complex spatio-temporal correlation and the essential difference betw

英文关键词: Spatio-temporal model;Nonparametric method;Spatio-temporal Correlation;Spatio-temporal heterogeneity;Large sample peoperties

成为VIP会员查看完整内容
0

相关内容

【ICLR2022】图神经网络复杂时间序列建模
专知会员服务
90+阅读 · 2022年4月15日
时间序列计量经济学
专知会员服务
48+阅读 · 2022年4月8日
【经典书】全局优化算法:理论与应用,820页pdf
专知会员服务
156+阅读 · 2021年11月10日
专知会员服务
14+阅读 · 2021年10月9日
专知会员服务
53+阅读 · 2021年8月29日
专知会员服务
42+阅读 · 2021年6月2日
专知会员服务
109+阅读 · 2020年12月22日
专知会员服务
46+阅读 · 2020年11月13日
再谈变分自编码器(VAE):估计样本概率密度
PaperWeekly
3+阅读 · 2021年12月23日
【经典书】凸优化:算法与复杂度,130页pdf
从模型到应用,一文读懂因子分解机
AI100
10+阅读 · 2019年9月6日
交通评价指标概略
智能交通技术
15+阅读 · 2019年7月21日
贝叶斯机器学习前沿进展
架构文摘
13+阅读 · 2018年2月11日
回归预测&时间序列预测
GBASE数据工程部数据团队
43+阅读 · 2017年5月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
14+阅读 · 2019年11月26日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Knowledge Representation Learning: A Quantitative Review
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
小贴士
相关VIP内容
【ICLR2022】图神经网络复杂时间序列建模
专知会员服务
90+阅读 · 2022年4月15日
时间序列计量经济学
专知会员服务
48+阅读 · 2022年4月8日
【经典书】全局优化算法:理论与应用,820页pdf
专知会员服务
156+阅读 · 2021年11月10日
专知会员服务
14+阅读 · 2021年10月9日
专知会员服务
53+阅读 · 2021年8月29日
专知会员服务
42+阅读 · 2021年6月2日
专知会员服务
109+阅读 · 2020年12月22日
专知会员服务
46+阅读 · 2020年11月13日
相关资讯
再谈变分自编码器(VAE):估计样本概率密度
PaperWeekly
3+阅读 · 2021年12月23日
【经典书】凸优化:算法与复杂度,130页pdf
从模型到应用,一文读懂因子分解机
AI100
10+阅读 · 2019年9月6日
交通评价指标概略
智能交通技术
15+阅读 · 2019年7月21日
贝叶斯机器学习前沿进展
架构文摘
13+阅读 · 2018年2月11日
回归预测&时间序列预测
GBASE数据工程部数据团队
43+阅读 · 2017年5月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员