在许多领域,包括医疗保健、生物和气候科学,时间序列是不规则的采样,连续读数之间的时间间隔不同,不同的变量子集(传感器)在不同的时间点观测。在收集传感器测量数据时,经常存在一些实际问题,这些问题会导致各种类型的不正常现象,例如成本节约、传感器故障、物理场景中的外部力量、医疗干预等等。
虽然时间序列的机器学习方法通常假设完全可观察和固定大小的输入,但不规则采样的时间序列提出了相当大的挑战。例如,传感器的观测结果可能没有对齐,相邻读数之间的时间间隔可能因传感器而异,不同的样本可能在不同的时间记录不同数量的读数。
我们介绍Raindrop,一个图神经网络,学习嵌入不规则采样和多元时间序列,同时学习传感器的动态纯粹从观察数据。Raindrop可以处理不对齐的观测、变化的时间间隔、任意数量的观测,从而通过神经信息传递和时间自注意力产生固定维嵌入。
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“RADP” 就可以获取《【ICLR2022】图神经网络复杂时间序列建模》专知下载链接