项目名称: 不可压缩流体中的正定性及粘性的作用
项目编号: No.11301338
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 王科研
作者单位: 上海立信会计学院
项目金额: 22万元
中文摘要: 流体力学中的偏微分方程是应用偏微分方程最重要的研究对象之一,对它们的研究在物理、工程与力学中也有极其重要的应用背景。近年来,Navier-Stokes 方程及与欧拉方程或Navier-Stokes方程耦合的不可压缩流体力学方程引起了许多数学家的浓厚兴趣。我们将对Navier-Stokes方程及具有部分粘性的不可压缩的粘弹性流体力学方程、具有部分粘性的不可压缩的磁流体力学方程等这些流体力学中既有共性、又本质不同的偏微分方程解的条件适定性及整体适定性理论、解的奇性等进行较为系统的研究。不可压缩的Navier-Stokes方程解的正则性或有限时间有限能量奇性至今为止仍是一个众所周知的公开问题。本人相信上述的貌似更为复杂的流体力学方程可能具备比Navier-Stokes方程更好地分析性质,并将对此作初步探索。
中文关键词: 不可压缩;Navier-stokes;整体;适定性;
英文摘要: The partial differential equations arising from fluid mechanics stand at one of the central subjects of the interests in analysis of PDEs, with very wide applications in the field of physics, engineer and mechanics, etc. Recently, the incompressible Navier-Stokes equations and its coupled system with other scalars or fields with full or parital viscosity have attracted extensive attentions of mathematicians. We will focus on the mathematical theory of the incompressible Navier-Stokes equations and those coupled system with partial viscosity. In particular, we will study the singular behavior and global well-posedness of local smooth solutions. As is well-known that, the global well-posedness of the 3D incompressible Navier-Stokes equations is still one of the Millenium Prize problems. We believe that our study on those complicated equations may stimulate us some new ideas which makes them more promising than the Navier-Stokes equations.
英文关键词: Incompressibility;Navier-Stokes;Global;Well-posedness;