项目名称: 高效绿色逆变弧焊电源非线性优化控制

项目编号: No.51207083

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 电气科学与工程学科

项目作者: 段彬

作者单位: 山东大学

项目金额: 26万元

中文摘要: 有"工业缝纫机"之称的弧焊电源在国防和国民经济建设中的作用举足轻重。然而,弧焊电源异常复杂的非线性时变特性,不仅制约着焊接质量大幅提高,而且使其能耗大、电磁污染严重、可靠性低等顽疾长期未得到彻底解决,亟需新的理论和方法予以突破。本项目拟首先研究基于无源辅助谐振网络的高频软开关逆变拓扑,提高系统效率和动态响应;然后研究并提出一种基于哈密顿理论的弧焊电源整体建模、分析与能量优化控制方法,从电路和控制的角度全面保证能量的高效利用和熔滴过渡的精细控制,解决有色金属、高强钢等的高质量焊接难题;并运用不确定时变系统鲁棒估计理论,研究高性能、快响应的焊接反馈信息滤波算法,克服强干扰因素的不利影响,提升系统可靠性;最后构建基于SOPC的实验平台验证成果。本项目属电力电子技术和非线性科学交叉前沿方向,不仅对相关理论研究与应用有显著促进作用,而且对发展具有自主知识产权的先进弧焊技术和推进其产业化具有重大意义。

中文关键词: 逆变焊接电源;偏磁抑制;数字滤波;FPGA;

英文摘要: The arc welding power source holds an important position in national defense and national economic construction, which is called industrial sewing machine. However, the complex nonlinear time-varying characteristic of the arc welding power source, not only limits the great improvement of welding quality, but also makes some shortcomings have not been completely resolved, such as big energy consumption, high electromagnetic pollution and low reliability, so new theories and methods are needed urgently. First, a new high frequency soft switching inverter topology is proposed based on passive auxiliary resonant network to improve the system efficiency and dynamic response. Then, an intergrated modeling, analysis and energy optimal control method is researched and proposed based on Hamilton theory to ensure efficient energy output and fine control for droplet transfer from the point of view of the circuit and control. The method will also improve the welding quality of non-ferrous metal, high-strength steel and so on. Third, a new high performance and fast response filtering algorithm is researched based on robust estimation theory of uncertain time-varying system for welding feedback signals to overcome adverse effects of strong interferences and improve robustness and reliability for the arc welding power source.

英文关键词: arc welding power source;magnetic bias suppression;digital filtering;FPGA;

成为VIP会员查看完整内容
0

相关内容

工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
55+阅读 · 2021年9月18日
专知会员服务
27+阅读 · 2021年9月17日
专知会员服务
98+阅读 · 2021年7月11日
专知会员服务
37+阅读 · 2021年4月25日
绿色制造标准化白皮书(2021版),48页pdf
专知
0+阅读 · 2021年11月10日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
62+阅读 · 2020年7月12日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
15+阅读 · 2019年3月16日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
55+阅读 · 2021年9月18日
专知会员服务
27+阅读 · 2021年9月17日
专知会员服务
98+阅读 · 2021年7月11日
专知会员服务
37+阅读 · 2021年4月25日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员