可控核聚变、强人工智能、脑机接口是人类科技发展的几个重要方向,有关它们何时可以实现,科学家们的说法永远是「还需几十年」——面临的挑战太多,手头的方法却很有限。

那么用人工智能去控制核聚变,是不是一个有前途的方向?这个问题可能需要由提出 AlphaGo 的 DeepMind 来回答了。

最近,EPFL 和 DeepMind 使用深度强化学习控制托卡马克装置等离子体的研究登上了《自然》杂志。

论文地址:https://www.nature.com/articles/s41586-021-04301-9

首先,我们来思考一个问题:为什么要用人工智能控制核聚变?

托卡马克是一种用于容纳核聚变反应的环形容器,其内部呈现出一种特殊的混乱状态。氢原子在极高的温度下被挤压在一起,产生比太阳表面还热的、旋转的、翻滚的等离子体。找到控制和限制等离子体的方法将是释放核聚变潜力的关键,而后者被认为是未来几十年清洁能源的源泉。

在这一点上,科学原理似乎是说得通的,剩下的就是工程挑战。参与该研究的瑞士等离子体中心(SPC)主任 Ambrogio Fasoli 表示:「我们需要能够加热这个装置,并保持足够长的时间,以便我们从中吸取能量。」

在同样由聚变驱动的恒星中,仅依靠引力质量就足以将氢原子拉到一起并克服它们的相反电荷。在地球上,科学家们改为使用强大的磁线圈来限制核聚变反应,将其推到所需的位置。这些线圈必须仔细控制,以防止等离子体接触容器本身:这会损坏容器壁并减慢聚变反应。

但每次研究人员想要改变等离子体的配置并尝试不同的形状,以产生更多的能量或更纯净的等离子体时,都需要大量的工程和设计工作。传统的系统是由计算机控制的,基于模型和模拟,但 Fasoli 表示传统方法「复杂且不一定能起到优化的作用」。

DeepMind 控制团队负责人 Martin Riedmiller 表示:「人工智能,特别是强化学习,特别适合解决托卡马克中控制等离子体的复杂问题。」DeepMind 在论文中详细介绍了所提的可以自主控制等离子体的 AI。

成为VIP会员查看完整内容
21

相关内容

Nature论文: DeepMind用AI引导直觉解决数学猜想难题
专知会员服务
29+阅读 · 2021年12月2日
专知会员服务
125+阅读 · 2021年8月25日
专知会员服务
133+阅读 · 2021年2月17日
【Nature-MI】可解释人工智能的药物发现
专知会员服务
44+阅读 · 2020年11月1日
【经典书】算法C语言实现,Algorithms in C. 672页pdf
专知会员服务
81+阅读 · 2020年8月13日
前所未有:用AI控制核聚变,DeepMind再登Nature
学术头条
0+阅读 · 2022年2月17日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
12+阅读 · 2022年4月12日
Arxiv
58+阅读 · 2021年11月15日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
微信扫码咨询专知VIP会员