可控核聚变、强人工智能、脑机接口是人类科技发展的几个重要方向,有关它们何时可以实现,科学家们的说法永远是「还需几十年」——面临的挑战太多,手头的方法却很有限。
那么用人工智能去控制核聚变,是不是一个有前途的方向?这个问题可能需要由提出 AlphaGo 的 DeepMind 来回答了。
最近,EPFL 和 DeepMind 使用深度强化学习控制托卡马克装置等离子体的研究登上了《自然》杂志。
论文地址:https://www.nature.com/articles/s41586-021-04301-9
首先,我们来思考一个问题:为什么要用人工智能控制核聚变?
托卡马克是一种用于容纳核聚变反应的环形容器,其内部呈现出一种特殊的混乱状态。氢原子在极高的温度下被挤压在一起,产生比太阳表面还热的、旋转的、翻滚的等离子体。找到控制和限制等离子体的方法将是释放核聚变潜力的关键,而后者被认为是未来几十年清洁能源的源泉。
在这一点上,科学原理似乎是说得通的,剩下的就是工程挑战。参与该研究的瑞士等离子体中心(SPC)主任 Ambrogio Fasoli 表示:「我们需要能够加热这个装置,并保持足够长的时间,以便我们从中吸取能量。」
在同样由聚变驱动的恒星中,仅依靠引力质量就足以将氢原子拉到一起并克服它们的相反电荷。在地球上,科学家们改为使用强大的磁线圈来限制核聚变反应,将其推到所需的位置。这些线圈必须仔细控制,以防止等离子体接触容器本身:这会损坏容器壁并减慢聚变反应。
但每次研究人员想要改变等离子体的配置并尝试不同的形状,以产生更多的能量或更纯净的等离子体时,都需要大量的工程和设计工作。传统的系统是由计算机控制的,基于模型和模拟,但 Fasoli 表示传统方法「复杂且不一定能起到优化的作用」。
DeepMind 控制团队负责人 Martin Riedmiller 表示:「人工智能,特别是强化学习,特别适合解决托卡马克中控制等离子体的复杂问题。」DeepMind 在论文中详细介绍了所提的可以自主控制等离子体的 AI。