The goal-oriented document-grounded dialogue aims at responding to the user query based on the dialogue context and supporting document. Existing studies tackle this problem by decomposing it into two sub-tasks: knowledge identification and response generation. However, such pipeline methods would unavoidably suffer from the error propagation issue. This paper proposes to unify these two sub-tasks via sequentially generating the grounding knowledge and the response. We further develop a prompt-connected multi-task learning strategy to model the characteristics and connections of different tasks and introduce linear temperature scheduling to reduce the negative effect of irrelevant document information. Experimental results demonstrate the effectiveness of our framework.
翻译:面向目标的基于文件的对话旨在根据对话背景和辅助文件对用户查询作出回应。现有研究解决这一问题,将其分为两个子任务:知识识别和反应生成。然而,这种编审方法不可避免地会因错误传播问题而受到影响。本文件建议通过相继生成基础知识和反应来统一这两个子任务。我们进一步制定迅速连接的多任务学习战略,以模拟不同任务的特点和联系,并引入线性温度表,以减少无关文件信息的消极影响。实验结果显示了我们框架的有效性。