项目名称: 综合高效性、选择性和反抗性的生态农药分子设计与合成

项目编号: No.21332004

项目类型: 重点项目

立项/批准年度: 2014

项目学科: 环境化学

项目作者: 杨光富

作者单位: 华中师范大学

项目金额: 300万元

中文摘要: 高效性、选择性以及规避抗药性(或反抗性)是生态农药分子设计所面临的关键科学问题。以往的农药分子设计往往只偏重于解决农药分子的高效性和选择性,而忽略了规避抗药性(或反抗性)。如何在解决高效性和选择性的同时,使农药分子能有效规避抗药性(或反抗性)是农药分子设计所面临的一个重大挑战。本项目针对有害生物多样性、农药防治对象多样性和保护对象多样性的特点,拟采用比较化学生物学方法,从基因和种属两个层面上深入开展不同种属农药靶标产生抗药性的分子机制,进一步发展和完善靶标分子抗性及选择性的预测方法学,挖掘低抗性风险的作用靶位,寻找全新农药作用机制,建立和发展基于靶标组结构的分子设计方法,指导设计合成综合高效性、选择性和规避抗药性(或反抗性)的新型生态农药分子,力争创制出1~2个具有开发前景的候选生态农药。本项目的实施将进一步丰富和完善我国农药创新研究体系,提升我国农药创制的国际影响力。

中文关键词: 生态农药;分子设计;靶标组;抗药性;比较化学生物学

英文摘要: High potency, selectivity and anti-resistance are three key scientific problems that molecular design of ecological pesticide is facing. Traditional molecular design always focused on the high potency and selectivity of pesticide molecules, while ignoring the anti-resistance. Therefore, it is a big challenge how to solve the high potency, selectivity and anti-resistance at the same time. Keep in mind that pest diversity, pesticide control object diversity and protection of diversity of characteristics, the method of comparative chemical biology will be applied to understand the molecular mechanism of resistance associated with different action targets from different species at the levels of gene and species. At the same time, this project is aimed to develop new methods for target resistance prediction, to mine target site with low risk of resistance, and to look for new action mechanism. Finally, this project is also aimed to develop a new molecular design method, called targetome structure-based design (TSBD), to guide the molecular design of new pesticide with high potency, selectivity and low risk of resistance. We believe that this project will contribute significantly to the basic research of pesticide in China, and further enhance the international influence of pesticide research and development in China.

英文关键词: Ecological Pesticide;Molecular Design;Targetome;Resistance;Comparative Chemical Biology

成为VIP会员查看完整内容
0

相关内容

【PKDD 2021】PaGNN:基于交互结构学习的链路预测
专知会员服务
18+阅读 · 2021年11月26日
【NeurIPS2021】基于贝叶斯优化的图分类对抗攻击
专知会员服务
18+阅读 · 2021年11月6日
专知会员服务
13+阅读 · 2021年10月12日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
15+阅读 · 2021年5月30日
专知会员服务
96+阅读 · 2021年5月25日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
69+阅读 · 2021年4月27日
专知会员服务
37+阅读 · 2021年4月18日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
29+阅读 · 2020年8月11日
ScienceDirect|AI 在3D化合物设计中的应用综述
GenomicAI
2+阅读 · 2022年2月9日
使用深度学习,通过一个片段修饰进行分子优化
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
12+阅读 · 2020年12月10日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
小贴士
相关主题
相关VIP内容
【PKDD 2021】PaGNN:基于交互结构学习的链路预测
专知会员服务
18+阅读 · 2021年11月26日
【NeurIPS2021】基于贝叶斯优化的图分类对抗攻击
专知会员服务
18+阅读 · 2021年11月6日
专知会员服务
13+阅读 · 2021年10月12日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
15+阅读 · 2021年5月30日
专知会员服务
96+阅读 · 2021年5月25日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
69+阅读 · 2021年4月27日
专知会员服务
37+阅读 · 2021年4月18日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
29+阅读 · 2020年8月11日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员