With the recent growth of remote work, online meetings often encounter challenging audio contexts such as background noise, music, and echo. Accurate real-time detection of music events can help to improve the user experience. In this paper, we present MusicNet, a compact neural model for detecting background music in the real-time communications pipeline. In video meetings, music frequently co-occurs with speech and background noises, making the accurate classification quite challenging. We propose a compact convolutional neural network core preceded by an in-model featurization layer. MusicNet takes 9 seconds of raw audio as input and does not require any model-specific featurization in the product stack. We train our model on the balanced subset of the Audio Set~\cite{gemmeke2017audio} data and validate it on 1000 crowd-sourced real test clips. Finally, we compare MusicNet performance with 20 state-of-the-art models. MusicNet has a true positive rate (TPR) of 81.3% at a 0.1% false positive rate (FPR), which is significantly better than state-of-the-art models included in our study. MusicNet is also 10x smaller and has 4x faster inference than the best performing models we benchmarked.


翻译:随着远程工作的最近增长,在线会议经常遇到具有挑战性的音频环境,如背景噪音、音乐和回声。准确实时探测音乐事件可以帮助改善用户体验。在本论文中,我们介绍MusicNet,这是一个用于实时通信管道中探测背景音乐的紧凑神经模型。在视频会议中,音乐经常以语音和背景噪音共同出现,使准确的分类变得相当具有挑战性。我们提议在模型成型层之前建立一个紧凑的神经神经网络核心。音乐网需要9秒钟原始音频作为投入,不需要产品堆中的任何模型化成型。我们用Set ⁇ cite{gemeke2017audio}数据中平衡的一组来培训我们的模型,并以1000个众源真实的测试剪辑来验证它。最后,我们将音乐网的性能与20个最先进的模型相比较。音乐网的正率为81.3%,以0.1%的假正率为正率(FPR),这比我们研究中包含的4个模型的状态要好得多。我们进行4x的最佳模型也比我们进行得更快。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
31+阅读 · 2018年11月13日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员