近年来,围绕着图卷积网络(GCN)这一主题的文献大量涌现。如何有效地利用复杂图(如具有异构实体和关系类型的知识图谱)中丰富的结构信息是该领域面临的主要挑战。大多数GCN方法要么局限于具有同质边类型的图(例如,仅引用链接),要么只专注于节点的表示学习,而不是针对目标驱动的目标共同传播和更新节点和边的嵌入。本文提出了一种新的框架,即基于知识嵌入的图卷积网络(KE-GCN),该框架结合了基于图的信念传播中知识嵌入的能力和高级知识嵌入(又称知识图嵌入)方法的优势,从而解决了这些局限性。我们的理论分析表明,KE-GCN作为具体案例提供了几种著名的GCN方法的优雅统一,并提供了图卷积的新视角。在基准数据集上的实验结果表明,与强基线方法相比,KE-GCN方法在知识图谱对齐和实体分类等任务中具有明显的优势。

https://www.zhuanzhi.ai/paper/3404ccd79333da7c1cbf8e013f258a64

成为VIP会员查看完整内容
69

相关内容

知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。它能为学科研究提供切实的、有价值的参考。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
44+阅读 · 2021年5月26日
专知会员服务
38+阅读 · 2021年4月25日
专知会员服务
40+阅读 · 2021年4月5日
【WWW2021】双曲图卷积网络的协同过滤
专知会员服务
40+阅读 · 2021年3月26日
【WWW2021】充分利用层级结构进行自监督分类法扩展
专知会员服务
16+阅读 · 2021年2月7日
【WWW2021】多视角图对比学习的药物药物交互预测
专知会员服务
54+阅读 · 2021年1月29日
【WWW2021】挖掘双重情感的假新闻检测
专知会员服务
37+阅读 · 2021年1月18日
专知会员服务
44+阅读 · 2020年12月13日
KDD20 | AM-GCN:自适应多通道图卷积网络
专知
8+阅读 · 2020年8月26日
【ICML2020】对比多视角表示学习
专知
19+阅读 · 2020年6月28日
ACL 2020 | 用于链接预测的开放知识图谱嵌入
PaperWeekly
6+阅读 · 2020年6月26日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
知识图谱嵌入(KGE):方法和应用的综述
专知
56+阅读 · 2019年8月25日
图数据表示学习综述论文
专知
52+阅读 · 2019年6月10日
Arxiv
0+阅读 · 2021年6月10日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2021年5月26日
专知会员服务
38+阅读 · 2021年4月25日
专知会员服务
40+阅读 · 2021年4月5日
【WWW2021】双曲图卷积网络的协同过滤
专知会员服务
40+阅读 · 2021年3月26日
【WWW2021】充分利用层级结构进行自监督分类法扩展
专知会员服务
16+阅读 · 2021年2月7日
【WWW2021】多视角图对比学习的药物药物交互预测
专知会员服务
54+阅读 · 2021年1月29日
【WWW2021】挖掘双重情感的假新闻检测
专知会员服务
37+阅读 · 2021年1月18日
专知会员服务
44+阅读 · 2020年12月13日
相关资讯
微信扫码咨询专知VIP会员