项目名称: 高维非线性气动弹性系统动力学及其在高超声速巡航飞行器中的应用
项目编号: No.11202095
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 周良强
作者单位: 南京航空航天大学
项目金额: 28万元
中文摘要: 高维非线性系统动力学是当前非线性动力学的研究热点与前沿。气动弹性系统是航空航天领域常见的系统,对这类系统的研究具有重要的理论与实际意义。本项目拟结合高超声速巡航飞行器的非线性动力学模型,研究高维非线性气动弹性系统的多参数稳定性、分岔与混沌动力学。利用规范性理论、奇异性理论探讨高维非线性系统的多参数稳定性与局部分岔;延拓研究高维非线性系统全局动力学的全局摄动技巧、广义Melnikov方法,研究高维非线性气动弹性系统的全局分岔与混沌动力学;利用同宿中心流形定理、Lin方法结合几何分析、Silnikov分析及Poincare映射研究高维非线性系统连接双曲平衡点到周期轨的异宿圈的动力学。研究结果将严格解析地揭示高超声速巡航飞行器模型等高维气动弹性系统的稳定性、局部分岔、全局分岔与混沌运动等复杂动力学现象及其产生的机理、规律与相应的参数条件,为高超声速巡航飞行器模型的分析与设计提供相应的理论基础。
中文关键词: 气动弹性系统;稳定性;分岔;混沌;非线性动力学
英文摘要: The dynamics of high dimensional systems is a hot and leading subject of nonlinear dynamics.Aeroelastic system is very common in the fields of aeronautics and astronautics. It has the important theory and practical significance to investigate this class of system. Combined with the nonlinear dynamic model of hypersonic cruise vehicle, this project study multiparameter stability, bifurcation and chaotic dynamics of the high dimensional aeraelastic systems. By using the normal form theory and singularity theory, we study the stability and local bifurcation of high dimensional nonlinear systems. Expanding the global perturbation technology and generalized Melnikov method of high dimensional nonlinear systems, we investigate the global bifurcation and chaotic dynamics of the high dimensional nonlinear aeroelastic system. By using the homoclinic center manifold theorem, Lin's Method together with geometric analysis, Silnikov analysis and Poincare map, we investigate the dynamics of heteroclinic cycles connnecting a hyperbolic equilibrium and a hyperbolic periodic orbit. The result will reveal the complex dynamics including stability, local bifurcation, global bifurcation and chaotic motion for the high dimensional aeroelastic systems including the model of hypersonic cruise vehicles rigorously and analytically. It w
英文关键词: aeroelastic system;stability;bifurcation;chaos;nonlinear dynamics